Reservoir Evaluation and Development ›› 2021, Vol. 11 ›› Issue (4): 613-620.doi: 10.13809/j.cnki.cn32-1825/te.2021.04.018
• Intelligent Evaluation • Previous Articles Next Articles
HUANG Jiachen1(),ZHANG Jinchuan2,3,4
Received:
2021-05-18
Online:
2021-08-26
Published:
2021-08-19
CLC Number:
HUANG Jiachen,ZHANG Jinchuan. Overview of oil and gas production forecasting by machine learning[J].Reservoir Evaluation and Development, 2021, 11(4): 613-620.
Table 1
Characteristics of big data in oil and gas field and key points of data analysis and utilization"
数据特点 | 互联网大数据 | 油气田大数据 | 油气田大数据分析利用 核心内容 |
---|---|---|---|
4V特征(数据量Volume、数据类型Variety、数据价值Value、产生速度Velocity) | 数据量大;类型繁多;价值密度低;产生快、失效快 | 数据量大;类型繁多;价值密度高;产生快、失效慢 | 尽快尽早地挖掘数据之间的关系,如:地质和开发条件与产量的关系 |
数据产生基础 | 被动无意识产生,需要数据挖掘才能找到数据的价值 | 主动设计产生,所有测量都与油气生产有关 | 根据应用场景和所选分析方法,进一步进行原始数据采集 |
数据之间的相关性 | 事先未知,需要进行统计分析,统计意义通常不明确 | 知道定性关系,但有时难以准确定量地描述 | 挖掘内在机理与观测数据的本质关系而非统计关系 |
处理技术 | 使用通用的大数据处理方法,这些机器学习算法通常是基于特定问题而被发明的 | 带专业约束关系的处理。需要建立适合油气田大数据分析的改进过的机器学习新模型 | 结合专业知识选择合适的数据驱动模型,使用数学模型对数据驱动模型进行约束和优化 |
数据结构化特征 | 可用数据较为完整;对于图像、自然语言等非结构化数据,有较为成熟的预处理算法和相应机器学习模型 | 历史数据通常不完整,特别是数据关系缺少;一些主导产量的信息难以结构化,如:构造特征、沉积环境等 | 如何进行数据预处理(包括数据筛选、特征工程等)。数据预处理工作量最大,并且对最终分析效果影响最大 |
数据预测的准确性 | 信息通常完备,特征中包含预测目标的全部信息,数据量足够大时弱学习器等价于强学习器,预测准确性高 | 信息通常不完备,很多重要信息不能被获取或特征化,数据噪声较大,预测效果存在理论上限,预测准确性低 | 在样本和可选特征有限、数据随机性成分较多的情况下,选择最适合预测场景模型,尽量提高预测准确性和稳定性 |
Table 2
Comparison between data-driven model and traditional analytical model and key points of data-driven modeling"
模型 | 优势 | 劣势 |
---|---|---|
传统解析模型 | 遵从实际机理,结果易于解释,更容易用于指导开发设计; 解析模型对计算机算力要求低,数值模拟对已知信息使用充分; 用于新的目标区时不需要先验的认识 | 模型应用条件苛刻,实际应用中必须先获得模型中所有参数; 无法处理一些非结构化的数据,如:井的层位信息等 |
数据驱动模型 | 普遍适用性高,稳定性好,需要后期人工调整的部分较少; 基于模糊逻辑,对专业知识依赖少; 可以使用通用的数据特征处理方法,容易处理非结构化数据 | 基于统计学原理,不易解释机理; 需要很多先验的训练样本才能得到可靠的模型,并且模型不能推广到其他研究区 |
数据驱动建模 工作要点 | 充分利用已知信息,结合专业知识进行数据特征工程; 根据已知数据的特点,建立对目标区最适用的、通用的预测模型,最终实现动态生产监测。 样本中对其标签产生影响的、但未作为机器学习或统计学建模特征的若干属性要尽量一致,排除非确定性信息的影响 |
[1] | 李航. 统计学习方法[M]. 北京: 清华大学出版社, 2012. |
LI Hang. Statistical learning method[M]. Beijing: Tsinghua University Press, 2012. | |
[2] | 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016. |
ZHOU Zhihua. Machine learning[M]. Beijing: Tsinghua University Press, 2016. | |
[3] | GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning[M]. Boston: MIT Press, 2016. |
[4] |
FISHER R A. The use of multiple measurements in taxonomic problems[J]. Annals of Eugenics, 1936, 7(2):179-188.
doi: 10.1111/j.1469-1809.1936.tb02137.x |
[5] |
BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1):5-32.
doi: 10.1023/A:1010933404324 |
[6] | CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3):273-297. |
[7] |
ROSENBLATT F. The perceptron: A probabilistic model for information storage and organization in the brain[J]. Psychological Review, 1958, 65(6):386.
pmid: 13602029 |
[8] |
RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088):533-536.
doi: 10.1038/323533a0 |
[9] | CUN Y L. Generalization and network design strategies[J]. Connectionism in Perspective, 1989, 19:143-155. |
[10] | ELMAN J L. Distributed representations, simple recurrent networks, and grammatical structure[J]. Machine Learning, 1991, 7(2):195-225. |
[11] | GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[J]. Advances in neural information processing systems, 2014, 27. |
[12] |
FREUND Y. Boosting a weak learning algorithm by majority[J]. Information and Computation, 1995, 121(2):256-285.
doi: 10.1006/inco.1995.1136 |
[13] |
WARD J H. Hierarchical grouping to optimize an objective function[J]. Journal of the American Statistical Association, 1963, 58:236-244.
doi: 10.1080/01621459.1963.10500845 |
[14] | MACQUEEN J. Some methods for classification and analysis of multivariate observations[J]. Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, 1967, 1(14):281-297. |
[15] | DEMPSTER A P, LAIRD N M, RUBIN D B. Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society: Series B(Methodological), 1977, 39(1):1-22. |
[16] |
CHENG Y. Mean shift, mode seeking, and clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(8):790-799.
doi: 10.1109/34.400568 |
[17] |
SHI J, MALIK J. Normalized cuts and image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8):888-905.
doi: 10.1109/34.868688 |
[18] | MIKOLOV T, KARAFIÁT M, BURGET L, et al. Recurrent neural network based language model [C]// Eleventh annual conference of the international speech communication association, Chiba, 2010. |
[19] | GREGOR K, DANIHELKA I, GRAVES A, et al. Draw: A recurrent neural network for image generation [C]// International Conference on Machine Learning, PMLR, Lille, 2015. |
[20] | DOYA K. Bifurcations of recurrent neural networks in gradient descent learning[J]. IEEE Transactions on Neural Networks, 1993, 1(75):218. |
[21] |
SCHUSTER M, PALIWAL K K. Bidirectional recurrent neural networks[J]. IEEE Transactions on Signal Processing, 1997, 45(11):2673-2681.
doi: 10.1109/78.650093 |
[22] | GRAVES A, FERNÁNDEZ S, SCHMIDHUBER J. Multi-dimensional recurrent neural networks [C]// International conference on artificial neural networks. Springer, Berlin, 2007. |
[23] | KALCHBRENNER N, DANIHELKA I, GRAVES A. Grid long short-term memory [C]// International Conference on Learning Representations, London, 2016. |
[24] | BENGIO Y, SIMARD P, FRASCONI P. Learning long-term dependencies with gradient descent is difficult[J]. IEEE Transactions on Neural Networks, 1994, 2(5):157-166. |
[25] |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780.
doi: 10.1162/neco.1997.9.8.1735 |
[26] |
GERS F A, SCHMIDHUBER J, CUMMINS F. Learning to forget: Continual prediction with LSTM[J]. Neural Computation, 2000, 12(10):2451-2471.
doi: 10.1162/089976600300015015 |
[27] | NAIR V, HINTON G E. Rectified linear units improve restricted boltzmann machines [C]// ICML, Haifa, 2010. |
[28] | PASCANU R, MIKOLOV T, BENGIO Y. On the difficulty of training recurrent neural networks [C]// International conference on machine learning, PMLR, Atlanta, 2013. |
[29] | SRIVASTAVA N. Improving neural networks with dropout[D]. Toronto: University of Toronto, 2013, 182:566. |
[30] | LOLON E, HAMIDIEH K, WEIJERS L, et al. Evaluating the relationship between well parameters and production using multivariate statistical models: A middle bakken and three forks case history [C]// SPE hydraulic fracturing technology conference, Woodlands, 2016. |
[31] | CLAR F H, MONACO A. Data-driven approach to optimize stimulation design in Eagle Ford formation [C]//Unconventional Resources Technology Conference, Denver, 2019. |
[32] |
MONTGOMERY J B, O’SULLIVAN F M. Spatial variability of tight oil well productivity and the impact of technology[J]. Applied Energy, 2017, 195:344-355.
doi: 10.1016/j.apenergy.2017.03.038 |
[33] | ZHOU Q, KLEIT A, WANG J, et al. Evaluating gas production performances in marcellus using data mining technologies [C]//Unconventional Resources Technology Conference. Denver, 2014. |
[34] |
CLARKSON C R, JENSEN J L, PEDERSEN P K, et al. Innovative methods for flow-unit and pore-structure analyses in a tight siltstone and shale gas reservoir[J]. AAPG bulletin, 2012, 96(2):355-374.
doi: 10.1306/05181110171 |
[35] | SCHUETTER J, MISHRA S, ZHONG M, et al. Data analytics for production optimization in unconventional reservoirs [C]// Unconventional Resources Technology Conference, San Antonio, 2015. |
[36] | 陈云天. 基于机器学习的测井曲线补全与生成研究[D]. 北京:北京大学, 2020. |
CHEN Yuntian. Research on well log completion and generation based on machine learning[D]. Beijing: Peking University, 2020. | |
[37] |
SAGHEER A, KOTB M. Time series forecasting of petroleum production using deep LSTM recurrent networks[J]. Neurocomputing, 2019, 323:203-213.
doi: 10.1016/j.neucom.2018.09.082 |
[38] | 周于皓, 刘慧卿, 祁鹏, 等. 基于循环神经网络的缝洞型油藏油井产量预测[J]. 计算物理, 2018, 35(6):668-674. |
ZHOU Yuhao, LIU Huiqing, QI Peng, et al. Forecast of oil production in fractured-vuggy reservoir by using recurrent neural networks[J]. Chinese Journal of Computational Physics, 2018, 35(6):668-674. | |
[39] | 谷建伟, 周梅, 李志涛, 等. 基于数据挖掘的长短期记忆网络模型油井产量预测方法[J]. 特种油气藏, 2019, 26(2):77-81. |
GU Jianwei, ZHOU Mei, LI Zhitao, et al. Oil well production forecast with long - short term memory network model based on data mining[J]. Special Oil and Gas Reservoirs, 2019, 26(2):77-81. |
[1] | ZHANG Jinchuan,CHEN Shijing,LI Zhongming,LANG Yue,WANG Chunyan,WANG Dongsheng,LI Zhen,TANG Xuan,LIU Yang,LI Pei,TONG Zhongzheng. Intelligent evaluation of shale gas resources [J]. Reservoir Evaluation and Development, 2021, 11(4): 476-486. |
[2] | LI Chang,SHEN Anjiang,CHANG Shaoying,LIANG Zhengzhong,LI Zhenlin,MENG He. Application and contrast of machine learning in carbonate lithofacies log identification: A case study of Longwangmiao Formation of MX area in Sichuan Basin [J]. Reservoir Evaluation and Development, 2021, 11(4): 586-596. |
[3] | YU Shaoyong,LIU Yuhui. Production performance and EUR forecast of wells producing from tight/shale reservoirs [J]. Reservoir Evaluation and Development, 2021, 11(2): 146-153. |
[4] | Zhao Jinzhou,You Xianyong,Li Yongming,Pu Xuan. Analysis of unsteady early period production forecast model for fractured horizontal wells in shale gas reservoir [J]. Reservoir Evaluation and Development, 2018, 8(6): 70-76. |
|