油气藏评价与开发

• • 上一篇    下一篇

蠕变效应下页岩压裂分区渗透率动态演变特征实验研究

江松莲1, 叶铠睿1, 钱超1, 张森林2, 秦佳正2, 汤勇2   

  1. 1.中国石油川庆钻探工程有限公司页岩气勘探开发项目经理部,四川 成都 610051;
    2.西南石油大学油气藏地质及开发工程全国重点实验室,四川 成都 610500
  • 收稿日期:2025-04-27
  • 通讯作者: 秦佳正(1993—),女,博士,副研究员,主要从事非常规油气藏渗流理论、储气库及CO2埋存、人工智能在油气领域的应用研究工作。地址:四川省成都市新都区新都大道8号,邮政编码:610500。E-mail: jqin_swpu@163.com
  • 作者简介:江松莲(1993—),女,硕士,工程师,主要从事油气藏开发研究工作。地址:四川省成都市成华区猛追湾6号,邮政编码:610051。E-mail: jiangsl_dyy@cnpc.com.cn
  • 基金资助:
    国家自然科学基金资助项目“页岩气藏动态缝网多井窜流干扰多相渗流理论研究”(12302338); 四川省自然科学基金项目“考虑动态缝网的页岩气藏多井控压生产机理及数值模拟研究”(2023NSFSC0937)

Experimental study on dynamic evolution characteristics of permeability in shale fracturing zones under creep effects

JIANG SONGLIAN1, YE KAIRUI1, QIAN CHAO1, ZHANG SENLIN2, QIN JIAZHENG2, TANG YONG2   

  1. 1. Shale Gas Exploration and Development Project Manager Department, CNPC Chuanqing Drilling Engineering Company Limited, Chengdu, Sichuan 610051, China;
    2. State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China
  • Received:2025-04-27

摘要: 在页岩水力压裂过程中,应变演化会加剧物性损伤,导致储层不同区域会呈现差异化的渗透率变化规律。页岩内部矿物组成差异和微观结构非均质性赋予其蠕变特性,进而导致页岩储层发生时效变形,降低裂缝导流能力。以往针对页岩岩心的蠕变研究多聚焦于力学特性,而关注蠕变效应如何影响渗透率演变的实验较少。国外学者针对页岩渗透率与时间的关系开展了相关实验研究,但未对具有不同渗流能力和特征的岩心进行全面研究。本研究将井筒附近储层划分为3个区域:支撑缝区、未支撑缝区和基质区,并利用井下实际页岩岩心表征分区储层特性,建立了蠕变效应-渗透率测试装置及方法,通过分析岩心物性参数随时间的演变趋势,揭示了蠕变效应对页岩支撑裂缝、未支撑裂缝以及基质的渗透率损伤机制及变化规律。实验结果表明:支撑缝岩心、未支撑缝岩心和基质岩心的渗透率随有效应力作用时间的延长均呈指数衰减趋势,具体表现为渗透率初期快速下降,随后下降速度逐渐减缓。有效应力越大,渗透率衰减越快,未支撑缝岩心的衰减速度最快,基质岩心次之,支撑缝岩心最缓。具体表现为:在25 MPa有效应力下持续108 h后,基质岩心、未支撑缝岩心和支撑缝岩心的渗透率分别降至初始值的44.07%、4.21%和1.55%;在45 MPa有效应力下持续108 h后,上述岩心的渗透率则分别降至初始值的9.28%、3.81%和1.02%。均质孔隙结构(孔隙大小、形状和分布高度一致),使得外部有效应力能够均匀分散至整个岩心,在低应力条件下,这种均匀性避免了局部应力集中导致的孔隙塌陷或裂隙扩展。因此,在低有效应力条件下,基质岩心的渗透率衰减程度相对较小。本研究基于物理模拟手段,有效揭示并阐明了变应力条件下页岩储层不同分区蠕变效应对渗透率的影响规律。

关键词: 页岩气, 应力效应, 渗透率动态演变, 蠕变效应, 物模实验

Abstract: During shale hydraulic fracturing, strain evolution exacerbates physical damage, leading to differentiated permeability changes across reservoir regions. Variations in mineral composition and microstructural heterogeneity in shale contribute to creep characteristics, leading to time-dependent reservoir deformation and reduced fracture conductivity. Previous creep experiments on shale cores mainly focus on their mechanical properties, with few studies investigating how creep effects influence permeability evolution. Although some international researchers have examined the relationship between shale permeability and time through experiments, comprehensive studies on cores with different flow capabilities and characteristics remain lacking. In this study, the reservoir near the wellbore was divided into three zones: propped fracture zone, unpropped fracture zone, and matrix zone. Using actual downhole shale cores, the reservoir characteristics of each zone were identified. A testing device and methodology for coupling creep effects and permeability were established. By analyzing the time-dependent evolution of core physical parameters, the mechanisms and variation patterns of permeability damage induced by creep effects in shale propped fractures, unpropped fractures, and the matrix were investigated. The results showed that the permeability of propped fracture cores, unpropped fracture cores, and matrix cores all exhibited an exponential decay with increasing effective stress duration, characterized by an initial rapid decline followed by a gradual slowdown. The permeability decay rate increased with effective stress, with the fastest decline in unpropped fracture cores, followed by matrix cores, and the slowest in propped fracture cores. Specifically, under an effective stress of 25 MPa for 108 h, the permeability of matrix, unpropped fracture, and propped fracture cores decreased to 44.07%, 4.21%, and 1.55% of their initial values, respectively. Under 45 MPa for the same duration, the corresponding values decreased to 9.28%, 3.81%, and 1.02%. The homogeneous pore structure (with highly uniform pore size, shape, and distribution) enabled the external effective stress to be evenly distributed throughout the core. Under low-stress conditions, this uniformity prevented pore collapse or fracture propagation due to local stress concentration. Consequently, the permeability attenuation in matrix cores was relatively minor under low effective stress conditions. Based on physical simulation, this study effectively reveals and clarifies the influence mechanisms of creep effects on permeability in different shale reservoir zones under varying stress conditions.

Key words: shale gas, stress effect, permeability dynamic evolution, creep effect, physical simulation experiment

中图分类号: 

  • TE319