油气藏评价与开发

• •    

基于多层感知器的砂岩成岩相测井识别——以珠江口盆地陆丰凹陷为例

吴丰1, 王澳1,2, 管耀3, 石磊3, 陈春潮4, 梁晓宇5, 高树芳5   

  1. 1.西南石油大学地球科学与技术学院,四川 成都 610500;
    2.中国石油集团测井有限公司,陕西 西安 710077;
    3.中海石油(中国)有限公司深圳分公司,广东 深圳 518054;
    4.成都代瑞克能源技术有限责任公司,四川 成都 610500;
    5.中国石油青海油田分公司勘探开发研究院,甘肃 敦煌 736202
  • 收稿日期:2024-12-23
  • 作者简介:吴丰(1983—),男,博士,副教授,从事非常规储层测井评价与三维数字岩心模拟研究。地址:四川省成都市新都区新都大道8号,邮政编码:610500。E-mail:wfswpu@126.com
  • 基金资助:
    中海石油(中国)有限公司深圳分公司2022勘探项目“南海东部古近系低渗储层压后参数预测与下限指标确定方法研究”(SCKY-2020-SZ-02); 国家自然科学基金区域创新发展联合基金项目“四川深部页岩气开采压裂技术关键问题与潜在地质灾害风险防控”(U20A20266)

Sandstone diagenetic facies logging identification based on multilayer perceptron: A case study of Lufeng Sag in Pearl River Mouth Basin

WU Feng1, WANG Ao1,2, GUAN Yao3, SHI Lei3, CHEN Chunchao4, LIANG Xiaoyu5, GAO Shufang5   

  1. 1. School of Geoscience and Technology, Southwest Petroleum University, Chengdu, Sichuan 610500, China;
    2. China National Logging Corporation, Xi’an, Shaanxi 710077, China;
    3. Shenzhen Company of CNOOC (China) Limited, Shenzhen, Guangdong 518054, China;
    4. Chengdu Dairuike Energy Technology Co., Ltd., Chengdu, Sichuan 610500, China;
    5. Research Institution of Exploration and Development, PetroChina Qinghai Oilfield Company, Dunhuang, Gansu 736202, China
  • Received:2024-12-23

摘要: 砂岩成岩相特征复杂、类型多样,以珠江口盆地陆丰凹陷始新统砂岩为研究对象,建立一套准确的砂岩成岩相分类与识别方法具有重要意义。为精确划分成岩相,采用成岩作用参数与图像处理技术,通过铸体薄片各组分含量来表征压实、胶结、溶蚀成岩作用强度差异,进而根据成岩作用强度将成岩相划分为Ⅰ类、Ⅱ类、Ⅲ类。随后,将自然伽马、声波时差、补偿中子、补偿密度和电阻率等测井曲线数据与Ⅰ类、Ⅱ类、Ⅲ类成岩相特征建立多层感知器神经网络模型,并通过控制变量优化模型参数,最终实现成岩相的划分和测井识别。通过与实际薄片成岩相对比,多层感知器模型识别的准确率达到82.11%,将模型应用于LF13-9-1井成岩相进行识别,总样本数有23个,识别的准确率达到82.61%,说明该模型具有良好的识别效果。基于图像处理技术与多层感知器的砂岩成岩相分类与识别方法的建立可为砂岩成岩相识别提供参考。

关键词: 珠江口盆地, 文昌组, 成岩相, 图像处理, 机器学习, 测井

Abstract: The characteristics of sandstone diagenetic facies are complex and diverse. Taking the Eocene sandstones in the Lufeng Sag of the Pearl River Mouth Basin as the research object, it is of great practical significance to establish an accurate method for the classification and identification of sandstone diagenetic facies. To accurately classify the diagenetic facies, diagenetic parameters and image processing techniques were employed. The intensities of compaction, cementation, and dissolution were characterized by the content of each component in cast thin sections. Based on intensity difference, the diagenetic facies were classified into Class I, Class II, and Class III. Subsequently, a multilayer perceptron (MLP) neural network model was established by combining logging curve data including natural gamma, acoustic time difference, compensated neutron, compensated density, and resistivity, along with the characteristics of three diagenetic facies classes. Model parameters were optimized by controlling variables, ultimately achieving the classification of diagenetic facies and logging identification. Compared with the actual thin section diagenetic facies, the MLP model achieved an identification accuracy of 82.11%. When applied to well LF13-9-1, the model identified 23 samples with an accuracy of 82.61%, demonstrating good identification performance. The sandstone diagenetic facies classification and identification method integrating image processing technology and an MLP model provides a reference for future sandstone diagenetic facies identification.

Key words: Pearl River Mouth Basin, Wenchang Formation, diagenetic facies, image processing, machine learning, logging

中图分类号: 

  • TE19