油气藏评价与开发

• • 上一篇    下一篇

一种基于时序注意力动态卷积的油气井产量预测方法

杨晨, 彭小龙, 朱苏阳, 王超文, 官文洁, 向东流   

  1. 西南石油大学油气藏地质及开发工程全国重点实验室,四川 成都 610500
  • 收稿日期:2024-08-01
  • 通讯作者: 彭小龙(1973—),男,博士,教授,从事油气及煤层气藏渗流理论和数值模拟、地质建模数模一体化、油气藏分子模拟研究。地址:四川省成都市新都区新都大道8号,邮政编码:610500。E-mail:peng_xl@126.com
  • 作者简介:杨晨(2000—),男,在读硕士研究生,从事油藏数值模拟和人工智能在油气领域应用方面的研究工作。地址:四川省成都市新都区新都大道8号,邮政编码:610500。E-mail:y1183797365@163.com
  • 基金资助:
    四川省中央引导地方科技发展项目“油气藏多相渗流突变界面条件建立及数值模拟模型构建”(2022ZYD0003)

A method for oil and gas well production prediction based on time-series attention dynamic convolution

YANG CHEN, PENG XIAOLONG, ZHU SUYANG, WANG CHAOWEN, GUAN WENJIE, XIANG DONGLIU   

  1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China
  • Received:2024-08-01

摘要: 目前机器学习对油气井产量预测效果不佳的原因在于常规方法过度依赖历史产量数据特征,使得预测结果更多地表现为对历史信息的重组,而难以预测新的趋势。这些方法忽略了其他重要的时序变量,如油气井的开发阶段、压力和产水等对产量的影响。为了解决这些问题,研究提出了压力、产水和产量的关联对策,并建立了一种基于时序注意力动态卷积神经网络的油气井产量预测方法,该方法以时域卷积神经网络为基础模型,引入了多头注意力和动态卷积机制,从而捕捉输入特征序列中不同时间步之间的长期依赖关系,并为每个时间步分配不同的权重。动态卷积模块可以根据时序注意力模块的输出,动态地生成卷积核参数,从而适应不同生产阶段的输入特征。通过安岳采气作业区多井真实复杂案例的验证,展示了基于时序注意力动态卷积的油气井产量预测模型的优越性。研究表明,所提出的模型在面对随机选取的4口井时表现出更好的预测效果。进一步通过对注意力权重和动态卷积权重的可视化分析,发现该模型能够根据不同开发阶段动态调整卷积核权重,特别是针对气井的初始阶段、过渡阶段和衰退阶段。通过结合开发阶段的压力、产水和产量关系,时序注意力动态卷积神经网络模型能自适应调整其结构和参数,从而实现对油气井产量的精准预测。

关键词: 油气井产量预测, 时域卷积神经网络, 多头注意力, 动态卷积, 自适应

Abstract: The current poor performance of machine learning in predicting oil and gas well production is primarily due to conventional methods overly relying on historical production data features, which results in predictions that largely resemble the recombination of past information, failing to forecast new trends. These methods overlook other important time-series variables, such as the development stage of the oil and gas well, pressure, and water production, which affect production. To address this issue, this study proposes a strategy for associating pressure and water production with output and establishes a novel oil and gas well production forecasting method based on a temporal attention dynamic convolutional neural network (TADyC). The method uses a temporal convolutional neural network as the base model and introduces multi-head attention and dynamic convolution mechanisms to capture the long-term dependencies between different time steps in the input feature sequence, assigning different weights to each time step. The dynamic convolution module can dynamically generate convolution kernel parameters based on the output of the temporal attention module, thus adapting to the input features of different production stages. Through verification with real-world, complex multi-well cases from the Anyue gas production area, the superiority of the TADyC-based oil and gas well production forecasting model is demonstrated. The study shows that the proposed model performs better when tested on four randomly selected wells. Further, through the visualization analysis of attention and dynamic convolution weights, it is found that the model can dynamically adjust the convolution kernel weights according to different development stages, particularly for the initial, transition, and decline stages of the wells. By combining the relationships between pressure, water production, and yield at different development stages, the temporal attention dynamic convolution neural network model can adaptively adjust its structure and parameters, thus achieving accurate oil and gas well production forecasting.

Key words: Oil and gas well production prediction, Temporal Convolutional Neural Network, Multi-head attention, Dynamic convolution, Adaptivity

中图分类号: 

  • TE319