油气藏评价与开发

• • 上一篇    下一篇

超临界CO2-H2O作用下不同煤阶煤体孔隙结构演化及分形特征

宋学梅1, 张琨1, 董良2, 马萌芽3, 刘会虎2, 徐宏杰2, 王智1   

  1. 1.煤炭无人化开采数智技术全国重点实验室,安徽 淮南 232001;
    2.安徽理工大学地球与环境学院,安徽 淮南 232001;
    3.安徽理工大学煤炭安全精准开采国家地方联合工程研究中心,安徽 淮南 232001
  • 收稿日期:2024-09-25
  • 通讯作者: 张琨(1992—),男,博士,讲师,主要从事煤层气开发地质与工程的研究。地址:安徽省淮南市泰丰大街168号安徽理工大学,邮政编码:232001。E-mail: kzhang@aust.edu.cn
  • 作者简介:宋学梅(2001—),女,在读硕士研究生,主要从事非常规天然气地质勘测与开发的研究。地址:安徽省淮南市泰丰大街168号安徽理工大学,邮政编码:232001。E-mail: songxuemei1133@163.com.
  • 基金资助:
    国家自然科学基金项目“深部不可采煤层CO2地质存储和垂向运移过程中顶板盖层封闭性演化特征与机理研究”(42202200); 国家自然科学基金项目“地质封存条件下CO2-水作用的煤润湿性演变机理研究”(42472228); 国家科技重大专项“深部碳储空间探测与地质评价”(2024ZD1004204); 安徽理工大学引进人才科研启动基金项目“煤中微细粒黄铁矿的赋存与演化特征”(13230531); 煤炭安全精准开采国家地方联合工程研究中心开放基金资助项目“煤中微细粒黄铁矿赋存地球化学特征及其演变机理研究”(EC2023027)

Pore structure evolution and fractal characteristics of different rank coal under supercritical CO2-H2O

SONG XUEMEI1, ZHANG KUN1, DONG LIANG2, MA MENGYA3, LIU HUIHU2, XU HONGJIE2, WANG ZHI1   

  1. 1. State Key Laboratory of Digital Intelligent Technology for Unmanned Coal Mining, Huainan, Anhui 232001, China;
    2. School of Earth and Environment, Anhui University of Science and Technology, Huainan, Anhui 232001, China;
    3. National and Local Joint Engineering Research Center of Coal Safety and Precision Mining, Anhui University of Science and Technology, Huainan, Anhui 232001, China
  • Received:2024-09-25

摘要: 深部煤层注入CO2强化煤层气抽采兼具环保效益与经济效益,有广阔的发展前景。为探讨不同类型煤体在CO2注入后的煤体结构变化情况,选用最大镜质体反射率(Ro,max)不同的5个样品,开展模拟煤层埋深为1 500 m温压条件下的超临界CO2注入实验,利用低温N2吸附法和压汞法测试注入前后煤样的孔隙结构变化特征,并采用分形理论定量比较其变化程度。N2吸附实验结果显示:经过超临界CO2-H2O作用前后煤样孔容均随煤阶增加先减小后增大,在焦煤处形成拐点,孔容在微孔阶段(孔隙直径介于0~2 nm)增幅最大。压汞实验的孔容变化情况较为复杂,在过渡孔(孔隙直径介于2~50 nm)和裂隙(孔隙直径大于1 000 nm)阶段增幅明显,这是由于超临界CO2-H2O反应增加了煤中的非有效连通孔隙,提升了煤样的局部连通性;部分样品反应后总孔容甚至有减小趋势,可能与脱落的矿物质堵塞孔隙有关。对反应前后样品的孔隙参数分形分析结果显示:不同样品的孔隙结构变化取决于煤体特征参数,低煤阶与高煤阶煤反应后孔容变化幅度更大,且矿物质含量越高变化程度更大。该研究有助于深入理解深部煤层CO2注入对煤层孔隙结构的改造作用,可为CO2地质封存与煤层气强化开发(CO2-ECBM)工程选址提供参考。

关键词: 超临界CO2, CO2-ECBM, 煤阶, 孔隙变化, 分形

Abstract: Injecting CO2 into deep coal seams to strengthen CBM extraction has both environmental and economic benefits, and has broad development prospects. In order to explore the changes of coal structure of different types of coal after CO2 injection, five samples with different maximum vitrinite reflectance (Ro, max) were selected to carry out supercritical CO2 injection experiments under the condition of simulated coal seam burial depth of 1 500 m. The characteristics of pore and fracture structure of coal samples before and after injection were tested by low temperature nitrogen adsorption and mercury porosity method, and the degree of change was quantitatively compared by fractal theory. The results of nitrogen adsorption experiments show that the pore volume of coal samples before and after supercritical CO2-H2O reaction decreases first and then increases with the increase of coal rank. An inflection point is formed at coking coal, and the pore volume increases the most in the micropore stage (pore diameter 0~2 nm). The change of pore volume in mercury intrusion experiment is more complicated, and the pore volume increases obviously in the transition pore (pore diameter 2~50 nm) and fracture (pore diameter 1 000 nm) stages. This is because the supercritical CO2-H2O reaction increases the non-effective connected pores in coal and improves the local connectivity of coal samples. The total pore volume of some samples even showed a decreasing trend after reaction, which may be related to the blockage of pore cracks by shedding minerals. The results of fractal analysis of pore parameters of samples before and after reaction show that the change of pore and fracture structure of different samples depends on the characteristic parameters of coal body. The pore volume of low rank coal and high rank coal changes more after reaction, and the higher the mineral content, the greater the change. This study is helpful to understand the effect of CO2 injection in deep coal seam on the pore structure of coal seam, and can provide reference for the site selection of CO2 geological storage and enhanced coalbed methane development (CO2-ECBM) project.

Key words: supercritical CO2, CO2-ECBM, coal rank, pore change, fractal

中图分类号: 

  • TE357