玛北地区作为中国页岩油开发的新区块,其开发潜力巨大。然而,压裂产生的缝网结构对油井排采效率的影响尚未得到充分研究。因此,精确表征压裂缝网的特征是提升油井产量的关键。本研究通过对玛北地区7口页岩油井焖井后压力数据的监测,应用Bourdet(布德)方法绘制压降特征曲线,以评估缝网形态。进一步结合压裂参数和试产数据,对压裂缝网特征进行了综合评价。研究聚焦于缝网的主裂缝长度、次裂缝宽度、密度和渗透率等关键参数,旨在系统揭示缝网的发育特征。研究表明,玛北地区页岩油的压裂缝网可划分为3类:Ⅰ类缝网,主裂缝长度短、次裂缝宽度中等、缝网密度和渗透率高,压降导数曲线呈现偏左下的 “深V型”特征,表明该类缝网以导流能力为主导,能够有效提高油井排采效率;Ⅱ类缝网,主裂缝长度中等、次裂缝宽度宽、缝网密度中等和渗透率小,压降导数曲线呈现偏右上的“浅V型”特征,表明该类缝网以储集能力为主,尽管导流能力相对较弱,但仍具有一定的开发潜力;Ⅲ类缝网,主裂缝长度长、次裂缝宽度窄、缝网密度小和渗透率中等,整体缝网欠发育。其焖井压降导数曲线形态特征不明显,表明该类缝网在生产过程中见油晚,不利于油井高效开发。研究还揭示了一个重要规律:在破裂压力低的井中,若其他压裂条件相同,过高的每米加砂量易导致Ⅲ类缝网的形成。因此,为提高玛北地区页岩油开发效率,后续压裂设计中应着力避免形成Ⅲ类缝网。具体措施包括优化压裂参数(如合理控制每米加砂量),以提升缝网的导流与储集能力,最终实现页岩油的高效开发。
As a new block for shale oil development in China, Mabei area has huge development potential. However, the impact of fracture network structures generated by hydraulic fracturing on oil well drainage efficiency has not been fully studied. Therefore, accurately characterizing fracture networks is crucial for improving oil well production. This study monitored the pressure data after shut-in of 7 shale oil wells in Mabei area and used the Bourdet method to plot pressure drop characteristic curves to evaluate the fracture network morphology. By integrating fracturing parameters and production test data, this study aims to provide a scientific basis for the efficient development of shale oil in this area. The study selected seven wells of shale oil in the Mabei area as research subjects. Initially, detailed monitoring of shut-in pressure data from these wells was conducted. Subsequently, pressure drop characteristic curves were plotted using the Bourdet method, which effectively reflects the morphology and characteristics of fracture networks. By analyzing the morphology and characteristics of the pressure drop derivative curves, combined with fracturing parameters (such as breakdown pressure and sand volume per meter) and production test data (such as oil breakthrough time and production rates), a comprehensive evaluation of fracture network characteristics was performed. The study focused on key parameters such as main fracture length, secondary fracture width, density, and permeability, aiming to systematically reveal the development characteristics of fracture networks. The results showed that fracture networks of shale oil in Mabei area could be classified into three types. Type I fracture networks had short main fracture lengths, medium secondary fracture widths, high density, and high permeability. The pressure drop derivative curves showed deep V-shaped characteristics leaning to lower left, indicating that this type of fractured network was dominated by conductivity and could effectively improve oil well drainage efficiency. Type II fracture networks had medium main fracture lengths, wide secondary fracture widths, medium density, and low permeability. The pressure drop derivative curves showed shallow V-shaped characteristics leaning to upper right, indicating that this type of fractured network was mainly storage-oriented. Although their conductivity was relatively weak, they still held certain development potential. Type III fracture networks, characterized by long main fracture lengths, narrow secondary fracture widths, low density, and medium permeability, were overall underdeveloped. Their shut-in pressure drop derivative curves lacked distinct morphological characteristics, indicating that this type of fractured network had late oil breakthrough during the production process and was unfavorable for efficient oil well development. The study also revealed an important pattern. In wells with low breakdown pressure, under the same fracturing conditions, excessively high sand volume per meter tended to lead to the formation of Type III fracture networks. Therefore, to improve shale oil development efficiency in Mabei area, subsequent fracturing designs should focus on avoiding the formation of Type III fracture networks. Specific measures include optimizing fracturing parameters, such as reasonably controlling sand volume per meter, to enhance the conductivity and storage capacity of fracture networks, thereby achieving efficient shale oil development. In conclusion, this study provides valuable insights into the characteristics of fracture networks in the Mabei shale oil area and offers practical recommendations for optimizing hydraulic fracturing operations to maximize well productivity. Future research can expand the sample size and incorporate numerical simulations and field experiments to further validate these findings and refine the strategies for efficient shale oil development.
[1] 王建, 郭秋麟, 赵晨蕾, 等. 中国主要盆地页岩油气资源潜力及发展前景[J]. 石油学报, 2023, 44(12): 2033-2044.
WANG Jian, GUO Qiulin, ZHAO Chenlei, et al.Potentials and prospects of shale oil-gas resources in major basins of China[J]. Acta Petrolei Sinica, 2023, 44(12): 2033-2044.
[2] 周立宏, 陈长伟, 崔宇, 等. 渤海湾盆地黄骅坳陷油气勘探新领域、新类型及资源潜力[J]. 石油学报, 2023, 44(12): 2160-2178.
ZHOU Lihong, CHEN Changwei, CUI Yu, et al.New fields, new types and resource potentials of oil-gas exploration in Huanghua depression of Bohai Bay Basin[J]. Acta Petrolei Sinica, 2023, 44(12): 2160-2178.
[3] 王欣, 才博, 李帅, 等. 中国石油油气藏储层改造技术历程与展望[J]. 石油钻采工艺, 2023, 45(1): 67-75.
WANG Xin, CAI Bo, LI Shuai, et al.Development process and prospect of CNPC's reservoir stimulation technologies[J]. Oil Drilling & Production Technology, 2023, 45(1): 67-75.
[4] 何希鹏, 蔡潇, 高玉巧, 等. 页岩气勘探开发实验技术研究进展与发展方向[J]. 天然气工业, 2024, 44(7): 12-26.
HE Xipeng, CAI Xiao, GAO Yuqiao, et al.Experimental technologies of shale gas exploration and development: Research progress and development direction[J]. Natural Gas Industry, 2024, 44(7): 12-26.
[5] SCHMOKER J W.Resource-assessment perspectives for unconventional gas systems[J]. AAPG Bulletin, 2002, 86(11): 1993-1999.
[6] 唐煊赫, 朱海燕, 李奎东. 基于FEM-DFN的页岩气储层水力压裂复杂裂缝交错扩展模型[J]. 天然气工业, 2023, 43(1): 162-176.
TANG Xuanhe, ZHU Haiyan, LI Kuidong.A FEM-DFN-based complex fracture staggered propagation model for hydralic fracturing of shale gas reservoirs[J]. Natural Gas Industry, 2023, 43(1): 162-176.
[7] 李德旗, 陈钊, 邹清腾, 等. 四川盆地渝西大安区块龙潭组深层煤岩气压裂技术探索[J]. 天然气工业, 2024, 44(10): 150-158.
LI Deqi, CHEN Zhao, ZOU Qingteng, et al.Fracturing technologies for Longtan Formation deep coal-rock gas in Da'an Block of western Chongqing, Sichuan Basin[J]. Natural Gas Industry, 2024, 44(10): 150-158.
[8] MONTGOMERY C T, SMITH M B.Hydraulic fracturing: History of an enduring technology[J]. Journal of Petroleum Technology, 2010, 62(12): 26-40.
[9] 王勇, 汤勇, 李士伦, 等. 多级压裂水平井周期性注气吞吐提高页岩油气藏采收率: 以北美Eagle Ford非常规油气藏为例[J]. 天然气工业, 2023, 43(1): 153-161.
WANG Yong, TANG Yong, LI Shilun, et al.Cyclic gas injection huff-n-puff in multi-stage fracturing horizontal wells to improve recovery of shale oil and gas reservoirs: Taking Eagle Ford Shale in North America as an example[J]. Natural Gas Industry, 2023, 43(1): 153-161.
[10] 李跃纲, 宋毅, 黎俊峰, 等. 北美页岩气水平井压裂井间干扰研究现状与启示[J]. 天然气工业, 2023, 43(5): 34-46.
LI Yuegang, SONG Yi, LI Junfeng, et al.Research status and implications of well interference in shale gas horizontal well fracturing in North America[J]. Natural Gas Industry, 2023, 43(5): 34-46.
[11] 贾承造, 王祖纲, 姜林, 等. 中国页岩油勘探开发研究进展与科学技术问题[J]. 世界石油工业, 2024, 31(4): 1-11.
JIA Chengzhao, WANG Zugang, JIANG Lin, et al.Progress and key scientific and technological problems of shale oil exploration and development in China[J]. World Petroleum Industry, 2024, 31(4): 1-11.
[12] 陈刚. 准噶尔盆地玛湖页岩油地质工程甜点地震一体化预测方法研究[D]. 北京: 中国石油大学(北京), 2023.
CHEN Gang.Study on seismic integrated prediction method for geological-engineering sweet spot of Mahu Shale oil in the Junggar Basin[D]. Beijing: China University of Petroleum(Beijing), 2023.
[13] CHENG Y.Impact of water dynamics in fractures on the performance of hydraulically fractured wells in gas shale reservoirs[J]. Journal of Canadian Petroleum Technology, 2012, 51(2): 143-151.
[14] 王平平, 李秋德, 杨博, 等. 胡尖山油田安83长7致密油地层能量补充方式研究[J]. 石油化工应用, 2015, 34(3): 58-62.
WANG Pingping, LI Qiude, YANG Bo, et al.Researching on the formation energy supplement of An 83 Chang 7 tight oil reservoir of Hujianshan oilfield[J]. Petrochemical Industry Application, 2015, 34(3): 58-62.
[15] 李晓辉. 致密油注水吞吐采油技术在吐哈油田的探索[J]. 特种油气藏, 2015, 22(4): 144-146.
LI Xiaohui.Application of cyclic water injection for tight oil production in the Tuha Oilfield[J]. Special Oil and Gas Reservoirs, 2015, 22(4): 144-146.
[16] 郭建春, 唐堂, 张涛, 等. 深层页岩压裂多级裂缝内支撑剂运移与分布规律[J]. 天然气工业, 2024, 44(7): 1-11.
GUO Jianchun, TANG Tang, ZHANG Tao, et al.Migration and distribution laws of proppant in multi-scale fractures during deep shale fracturing[J]. Natural Gas Industry, 2024, 44(7): 1-11.
[17] 刘博, 徐刚, 纪拥军, 等. 页岩油水平井体积压裂及微地震监测技术实践[J]. 岩性油气藏, 2020, 32(6): 172-180.
LIU Bo, XU Gang, JI Yongjun, et al.Practice of volume fracturing and microseismic monitoring technology in horizontal wells of shale oil[J]. Lithologic Reservoirs, 2020, 32(6): 172-180.
[18] 闫鑫, 胡天跃, 何怡原. 地表测斜仪在监测复杂水力裂缝中的应用[J]. 石油地球物理勘探, 2016, 51(3): 480-486.
YAN Xin, HU Tianyue, HE Yiyuan.Application of surface tiltmeter in monitoring complicated hydraulic fractures[J]. Oil Geophysical Prospecting, 2016, 51(3): 480-486.
[19] 唐慧莹, 梁海鹏, 张烈辉, 等. 砾岩储层水力裂缝扩展形态及影响因素[J]. 石油学报, 2022, 43(6): 871-884.
TANG Huiying, LIANG Haipeng, ZHANG Liehui, et al.Hydraulic fracture extension patterns of conglomerate reservoirs and relevant influencing factors[J]. Acta Petrolei Sinica, 2022, 43(6): 871-884.
[20] 李海涛, 罗红文, 向雨行, 等. 基于DTS的页岩气水平井人工裂缝识别与产出剖面解释方法[J]. 天然气工业, 2021, 41(5): 66-75.
LI Haitao, LUO Hongwen, XIANG Yuxing, et al.DTS based hydraulic fracture identification and production profile interpretation method of horizontal well[J]. Natural Gas Industry, 2021, 41(5): 66-75.
[21] 王飞, 乔润伟, 祝健, 等. 基于焖井压降曲线的页岩油井压裂缝网特征诊断[J]. 石油学报, 2024, 45(8): 1234-1243.
WANG Fei, QIAO Runwei, ZHU Jian, et al.Diagnosis of fractured network characteristics of shale oil wells based on the pressure drop curve of post-fracturing shut-in[J]. Acta Petrolei Sinica, 2024, 45(8): 1234-1243.
[22] BOURDET D, AYOUB J A, PLRARD Y M.Use of pressure derivative in well-test interpretation[J]. SPE Formation Evaluation, 1989, 4(2): 293-302.
[23] 王睿. 致密油藏压后闷井蓄能机理与规律的数值模拟研究[D]. 北京: 中国石油大学(北京), 2019.
WANG Rui.Numerial simulation study on mechanism and law of energy storage in shut-in schedule after fracturing of tight oil[D]. Beijing: China University of Petroleum( Beijing), 2019.
[24] 赖锦, 王贵文, 范卓颖, 等. 非常规油气储层脆性指数测井评价方法研究进展[J]. 石油科学通报, 2016, 1(3): 330-341.
LAI Jin, WANG Guiwen, FAN Zhuoying, et al.Research progress in brittleness index evaluation methods with logging data in unconventional oil and gas reservoirs[J]. Shi You Ke Xue Tong Bao, 2016, 1(3): 330-341.