专家论坛

煤矿区煤层气开发技术应用现状及展望

  • 孙四清 ,
  • 杨帆 ,
  • 郑玉岐 ,
  • 张群 ,
  • 李浩哲 ,
  • 张庆利 ,
  • 程斌 ,
  • 李文博 ,
  • 吴晓眩
展开
  • 1.煤炭科学研究总院,北京 100013
    2.中煤科工西安研究院(集团)有限公司,陕西 西安 710077
孙四清(1977—),男,博士,研究员,硕士生导师,主要从事煤矿瓦斯治理及煤层气勘探开发。地址:陕西省西安市雁塔区锦业一路82号中煤科工西安研究院(集团)有限公司,邮政编码:710077。E-mail:sunsiqing@cctegxian.com

收稿日期: 2024-10-17

  网络出版日期: 2025-10-24

基金资助

国家科技重大专项“地面钻井煤层密闭取心气含量测试技术及装置”(2016ZX05045-002-002);国家自然科学青年基金项目“钻孔绳索取芯煤层气损失量估算方法研究”(41202122)

Current applications and prospects of coalbed methane development technologies in coal mining areas

  • SUN Siqing ,
  • YANG Fan ,
  • ZHENG Yuqi ,
  • ZHANG Qun ,
  • LI Haozhe ,
  • ZHANG Qingli ,
  • CHENG Bin ,
  • LI Wenbo ,
  • WU Xiaoxuan
Expand
  • 1. China Coal Research Institute, Beijing 100013, China
    2. CCTEG Xi’an Research Institute (Group) Co. , Ltd. , Xi’an, Shaanxi 710077, China

Received date: 2024-10-17

  Online published: 2025-10-24

摘要

“十二五”以来,为保障煤层气资源开发和煤矿安全高效生产,根据煤矿采掘工程部署、开采扰动和煤层地质条件,经过生产实践探索,形成了适用于中国煤矿区煤层气开发的“四区联动”抽采模式,即煤矿规划区、准备区、生产区及采空区的煤层气协同开发,已取得较好应用效果。主要表现在以下几个方面:①开发形成了适合于规划区的地面垂直井压裂、顺煤层水平井分段压裂及碎软煤层顶板水平井地面分段压裂抽采技术。甘肃窑街海石湾矿垂直井单井产气量达到2 607 m3/d;山西晋城寺河矿顺煤层分段压裂单井产气量突破9 100 m3/d;安徽淮北芦岭矿碎软煤层顶板水平井单井产气量达到10 760 m3/d。②研发了适合于准备区的煤矿井下定向长钻孔分段压裂抽采技术。陕西彬长大佛寺矿硬煤顺煤层长钻孔分段压裂钻孔长度达到600 m,单孔瓦斯抽采纯量达到3 600 m3/d;山西阳泉新景矿碎软煤层顶板分段压裂钻孔长度达到609 m,单孔瓦斯抽采纯量达到2 811 m3/d。③探索形成了适合于生产区的碎软煤层井下穿层钻孔高压加砂水力压裂和顺煤层气动定向钻进高效抽采技术。安徽淮南潘三矿穿层钻孔加砂水力压裂钻孔瓦斯抽采纯量是普通清水压裂的2.38倍;山西阳泉二矿气动定向钻进深度最大达到607 m,单孔瓦斯抽采纯量达到971.6 m3/d。④提出了适合于煤矿采空区的地面垂直井和L型水平井瓦斯抽采模式。安徽淮南潘一矿垂直井抽采量最高超过50 000 m3/d;山西晋城寺河矿L型水平井抽采量最高达30 000 m3/d。随着煤矿区煤层气开发效果进一步提升的需要,提出了煤矿区煤岩层大规模体积压裂、煤矿井地联合分段水力压裂、煤矿区深部煤层气开发等技术攻关方向,推动煤矿区煤层气开发技术发展,以更好保障煤炭资源安全开采和煤层气资源高效开发。

本文引用格式

孙四清 , 杨帆 , 郑玉岐 , 张群 , 李浩哲 , 张庆利 , 程斌 , 李文博 , 吴晓眩 . 煤矿区煤层气开发技术应用现状及展望[J]. 油气藏评价与开发, 2025 , 15(6) : 972 -982 . DOI: 10.13809/j.cnki.cn32-1825/te.2025.06.003

Abstract

Coalbed methane (CBM) is a hazardous gas that leads to gas explosions, coal and gas outbursts, and contributes to atmospheric greenhouse effects in coal mines. At the same time, CBM is a clean and efficient energy source. Developing CBM in coal mining areas offers significant benefits for enhanced safety, energy production, and environmental protection. In China, the estimated CBM resource is 32.86 × 1012 m3 at depths shallower than 2 000 meters and 40.71 × 1012 m3 at depths beyond 2 000 meters. Since the “12th Five-Year Plan”, an extraction model of “four-zone coordination” has been developed through practical exploration to ensure both CBM resource development and the safe, efficient operation of coal mines. This model is tailored to mining engineering deployment, mining-induced disturbances, and coal seam geological conditions. It involves coordinated CBM development in planning, preparation, production, and goaf areas, demonstrating significant effectiveness in practice. The key outcomes include: (1) Three technologies have been developed for use in planning areas, namely, surface vertical well fracturing, staged fracturing in coal-seam horizontal well, and staged fracturing and extraction. In the Haishiwan Mine of Yaojie, Gansu, vertical well interlayer temporary plugging and diverting fracturing technology is used in the target coal seam, and the CBM well production reaches 2 607 m3/day. In Sihe mine of the Jincheng Mining Area, Shanxi, bottom-sealed coiled tubing pulling hydraulic jet and annulus sand fracturing technology is used in coal seam 15. The length of the horizontal well is 820.53 m with 8 fracturing sections. The maximum well production is 9 100 m3/day, and the stable gas production is 7 000-8 000 m3/day. U-shaped horizontal well staged fracturing is used in the roof of fragmented and soft coal seam 8 of Luling Mine in the Huaibei Mining Area, Anhui Province. The horizontal well length is 585.96 m with 7 fracturing sections. The maximum well production is 10 760 m3/day, and the total production is 7.5 million m3. (2) Directional long borehole staged fracturing and extraction technology in underground coal mines have been developed in preparation areas. In the Dafosi Mine of Binchang, Shaanxi Province, long borehole staged fracturing is used in coal seam 4. The horizontal well length is 600 m with 8 fracturing sections. The maximum pure gas production is 3 600 m3/day, and the average is 1 000-2 500 m3/day. Pure gas production per 100 meters is 4.9-11.0 times that of unfractured boreholes in the same area. In the Xinjing Mine of the Yangquan Mining Area, Shanxi Province, the roof of fragmented and soft coal seam 3 is sand fractured in stages. The drilling length reaches 609 m with 10 fracturing sections. The maximum pure gas production is 2 811 m3/day, and the pure gas production per 100 meters is 5.6-15.4 times that of unfractured boreholes in the same area. (3) For fragmented and soft coal seams, technologies such as high-pressure sand hydraulic fracturing and pneumatic directional drilling have been developed in production areas. In the Pansan Mining Area, Anhui Province, sand hydraulic fracturing technology is used in coal seam 13-1. The pure gas production per 100 meters of sand-fractured borehole is 2.38 times that of conventional water fracturing. In the No.2 Mine of Yangquan, Shanxi Province, to address the difficulties of drilling in fragmented and soft coal seams and the tendency of borehole collapse upon encountering water, pneumatic directional drilling drainage technology is used in coal seam 8. The drilling depth is 607 m, and the pure gas production is 971.6 m3/day. (4) A ground vertical well and L- shaped horizontal well gas extraction model is developed for goaf areas in coal mines. In the Panyi Mine of the Huainan Mining Area, Anhui Province, due to the depressurization mining of coal seam 11-2, ground vertical wells are used to drain gas from coal seam No.13-1, and gas production reaches 50 000 m3/day. In the Sihe Mine, Jincheng Mining Area, Shanxi Province, the L-shaped horizontal well is used in the roof coal seam 3, and the pure gas production is 30 000 m3/day. Innovative technologies such as large-scale staged fracturing both at the surface and underground and deep CBM development have been proposed to promote technological advancement in coal mining areas and ensure the safe mining and efficient development of CBM resources.

参考文献

[1] 中能传媒能源安全新战略研究院. 中国能源大数据报告2024[R/OL]. (2024-06-17)[2025-05-22]. .
  China Energy Media Group’s New Strategy Research Institute for Energy Security. Big Data Report on China’s Energy. 2024[R/OL]. (2024-06-17)[2025-05-22]. .
[2] 张嘉琪, 刘曾勤, 申宝剑, 等. 国内外深层煤层气勘探开发进展与启示[J]. 石油实验地质, 2025, 47(1): 1-8.
  ZHANG Jiaqi, LIU Zengqin, SHEN Baojian, et al. Progress and insights from worldwide deep coalbed methane exploration and development[J]. Petroleum Geology & Experiment, 2025, 47(1): 1-8.
[3] 张新民, 赵靖舟, 马玉贞, 等. 中国煤层气技术可采资源潜力[M]. 北京: 科学出版社, 2010.
  ZHANG Xinmin, ZHAO Jingzhou, MA Yuzhen, et al. Potential of recoverable resources of coalbed methane technology in China[M]. Beijing: Science Press, 2010.
[4] 秦勇, 申建, 史锐. 中国煤系气大产业建设战略价值与战略选择[J]. 煤炭学报, 2022, 47(1): 371-387.
  QIN Yong, SHEN Jian, SHI Rui. Strategic value and choice on construction of large CMG industry in China[J]. Journal of China Coal Society, 2022, 47(1): 371-387.
[5] 桑树勋, 韩思杰, 周效志, 等. 华东地区深部煤层气资源与勘探开发前景初探[J]. 油气藏评价与开发, 2023, 13(4): 403-415.
  SANG Shuxun, HAN Sijie, ZHOU Xiaozhi, et al. Deep coalbed methane resource and its exploration and development prospect in East China[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 403-415.
[6] 邱文慈, 桑树勋, 郭志军, 等. 贵州六盘水煤田构造煤储层特征与煤层气勘探开发方向[J]. 油气藏评价与开发, 2024, 14(6): 959-966.
  QIU Wenci, SANG Shuxun, GUO Zhijun, et al. Characteristics of stratified coal reservoirs in Liupanshui coalfield of Guizhou Province and exploration and development direction of coalbed methane[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(6): 959-966.
[7] 张群, 冯三利, 杨锡禄. 试论我国煤层气的基本储层特点及开发策略[J]. 煤炭学报, 2001, 26(3): 230-235.
  ZHANG Qun, FENG Sanli, YANG Xilu. Basic reservoir characteristics and development strategy of coalbed methane resource in China[J]. Journal of China Coal Society, 2001, 26(3): 230-235.
[8] 康永尚, 孙良忠, 张兵, 等. 中国煤储层渗透率主控因素和煤层气开发对策[J]. 地质论评, 2017, 63(5): 1401-1418.
  KANG Yongshang, SUN Liangzhong, ZHANG Bing, et al. The controlling factors of coalbed reservoir permeability and CBM development strategy in China[J]. Geological Review, 2017, 63(5): 1401-1418.
[9] 鞠玮, 陶树, 杨兆彪, 等. 中国深部煤层气研究与勘探开发现状及其发展趋势[J]. 石油实验地质, 2025, 47(1): 9-16.
  JU Wei, TAO Shu, YANG Zhaobiao, et al. Current status and development trends of deep coalbed methane research in China[J]. Petroleum Geology & Experiment, 2025, 47(1): 9-16.
[10] 刘见中, 孙海涛, 雷毅, 等. 煤矿区煤层气开发利用新技术现状及发展趋势[J]. 煤炭学报, 2020, 45(1): 258-267.
  LIU Jianzhong, SUN Haitao, LEI Yi, et al. Current situation and development trend of coalbed methane development and utilization technology in coal mine area[J]. Journal of China Coal Society, 2020, 45(1): 258-267.
[11] 张志刚, 霍春秀. 煤矿区煤层气利用技术研究进展[J]. 矿业安全与环保, 2022, 49(4): 59-64.
  ZHANG Zhigang, HUO Chunxiu. Research progress of CBM utilization technology in mining areas[J]. Mining Safety & Environmental Protection, 2022, 49(4): 59-64.
[12] 叶建平. 中国煤层气勘探开发及其科技进步历程回顾与思考[J]. 煤田地质与勘探, 2025, 53(1): 114-127.
  YE Jianping. China’s CBM exploration and production and associated technological advancements: A review and reflections[J]. Coal Geology & Exploration, 2025, 53(1): 114-127.
[13] 李国富, 张遂安, 季长江, 等. 煤矿区煤层气“四区联动” 井上下联合抽采模式与技术体系[J]. 煤炭科学技术, 2022, 50(12): 14-25.
  LI Guofu, ZHANG Suian, JI Changjiang, et al. Mechanism and technical system of ground and underground combined drainage of CBM in “four region linkage” in coal mining area[J]. Coal Science and Technology, 2022, 50(12): 14-25.
[14] 孙海涛, 舒龙勇, 姜在炳, 等. 煤矿区煤层气与煤炭协调开发机制模式及发展趋势[J]. 煤炭科学技术, 2022, 50(12): 1-13.
  SUN Haitao, SHU Longyong, JIANG Zaibing, et al. Progress and trend of key technologies of CBM development and utilization in China coal mine areas[J]. Coal Science and Technology, 2022, 50(12): 1-13.
[15] 陈志胜. 煤矿区煤层气综合开发与利用存在问题探讨[J]. 煤炭科学技术, 2009, 37(7): 5-8, 34.
  CHEN Zhisheng. Discussion on problems existing in comprehensive development and utilization of coal bed methane in coal mining area[J]. Coal Science and Technology, 2009, 37(7): 5-8, 34.
[16] 武华太. 煤矿区瓦斯三区联动立体抽采技术的研究和实践[J]. 煤炭学报, 2011, 36(8): 1312-1316.
  WU Huatai. Study and practice on technology of three-zones linkage 3D coalbed methane drainage in coal mining area[J]. Journal of China Coal Society, 2011, 36(8): 1312-1316.
[17] 雷毅, 申宝宏, 刘见中. 煤矿区煤层气与煤炭协调开发模式初探[J]. 煤矿开采, 2012(3): 1-4.
  LEI Yi, SHEN Baohong, LIU Jianzhong. Initial discussion of coalbed methane and coal coordination mining mode[J]. Coal Mining Technology, 2012(3): 1-4.
[18] 刘见中, 沈春明, 雷毅, 等. 煤矿区煤层气与煤炭协调开发模式与评价方法[J]. 煤炭学报, 2017, 42(5): 1221-1229.
  LIU Jianzhong, SHEN Chunming, LEI Yi, et al. Coordinated development mode and evaluation method of coalbed methane and coal in coal mine area in China[J]. Journal of China Coal Society, 2017, 42(5): 1221-1229.
[19] 张培河, 张明山. 煤层气不同开发方式的应用现状及适应条件分析[J]. 煤田地质与勘探, 2010, 38(2): 9-13.
  ZHANG Peihe, ZHANG Mingshan. Analysis of application status and adapting conditions for different methods of CBM development[J]. Coal Geology & Exploration, 2010, 38(2): 9-13.
[20] 张群, 降文萍, 姜在炳, 等. 我国煤矿区煤层气地面开发现状及技术研究进展[J]. 煤田地质与勘探, 2023, 51(1): 139-158.
  ZHANG Qun, JIANG Wenping, JIANG Zaibing, et al. Present situation and technical research progress of coalbed methane surface development in coal mining areas of China[J]. Coal Geology & Exploration, 2023, 51(1): 139-158.
[21] 范耀, 茹婷, 李彬刚, 等. 焦坪矿区侏罗纪煤层地面煤层气井压裂液优选实验[J]. 煤田地质与勘探, 2014, 42(3): 40-42.
  FAN Yao, RU Ting, LI Bingang, et al. Fracturing fluid experiment for coalbed methane wells of Jurassic coal in Jiaoping block[J]. Coal Geology & Exploration, 2014, 42(3): 40-42.
[22] 杜新锋, 袁崇亮, 王正喜, 等. 窑街矿区浅层煤系气储层特征及勘探开发关键技术[J]. 煤田地质与勘探, 2021, 49(6): 58-66, 73.
  DU Xinfeng, YUAN Chongliang, WANG Zhengxi, et al. Characteristics of shallow coal measure gas reservoir and key technologies of exploration and development in Yaojie mining area[J]. Coal Geology & Exploration, 2021, 49(6): 58-66, 73.
[23] 许耀波, 郭盛强. 软硬煤复合的煤层气水平井分段压裂技术及应用[J]. 煤炭学报, 2019, 44(4): 1169-1177.
  XU Yaobo, GUO Shengqiang. Technology and application of staged fracturing in coalbed methane horizontal well of soft and hard coal composite coal seam[J]. Journal of China Coal Society, 2019, 44(4): 1169-1177.
[24] 苏善博. 寺河煤矿下组煤穿煤柱水平井煤层气开发井位部署研究[D]. 北京: 煤炭科学研究总院, 2023.
  SU Shanbo. Research on the deployment of CBM development wells in the horizontal well of the under-group coal seam through coal pillar of the Sihe mine[D]. Beijing: China Coal Research Institute, 2023.
[25] 高德利, 毕延森, 鲜保安. 中国煤层气高效开发井型与钻完井技术进展[J]. 天然气工业, 2022, 42(6): 1-18.
  GAO Deli, BI Yansen, XIAN Baoan. Technical advances in well types and drilling & completion for high-efficient development of coalbed methane in China[J]. Natural Gas Industry, 2022, 42(6): 1-18.
[26] 刘建林, 刘飞, 李泉新, 等. 碎软煤层瓦斯抽采钻孔孔壁稳定性分析[J]. 煤矿安全, 2018, 49(8): 189-193.
  LIU Jianlin, LIU Fei, LI Quanxin, et al. Stability analysis of borehole wall for gas drainage boreholes in broken soft coal seam[J]. Safety in Coal Mines, 2018, 49(8): 189-193.
[27] 王力, 姚宁平, 姚亚峰, 等. 煤矿井下碎软煤层顺层钻完孔技术研究进展[J]. 煤田地质与勘探, 2021, 49(1): 285-296.
  WANG Li, YAO Ningping, YAO Yafeng, et al. Research progress of drilling and borehole completion technologies in broken soft coal seam in underground coal mine[J]. Coal Geology & Exploration, 2021, 49(1): 285-296.
[28] 李浩哲, 姜在炳, 舒建生, 等. 水力裂缝在煤岩界面处穿层扩展规律的数值模拟[J]. 煤田地质与勘探, 2020, 48(2): 106-113.
  LI Haozhe, JIANG Zaibing, SHU Jiansheng, et al. Numerical simulation of layer-crossing propagation behavior of hydraulic fractures at coal-rock interface[J]. Coal Geology & Exploration, 2020, 48(2): 106-113.
[29] 巫修平, 张群. 碎软低渗煤层顶板水平井分段压裂裂缝扩展规律及控制机制[J]. 天然气地球科学, 2018, 29(2): 268-276.
  WU Xiuping, ZHANG Qun. Research on controlling mechanism of fracture propagation of multi-stage hydraulic fracturing horizontal well in roof of broken soft and low permeability coal seam[J]. Natural Gas Geoscience, 2018, 29(2): 268-276.
[30] 巫修平. 碎软低渗煤层顶板水平井分段压裂裂缝扩展规律及机制研究[D]. 北京: 煤炭科学研究总院, 2017.
  WU Xiuping. Research on control mechanism of fracture propagation of multi-stage hydraulic fracturing horizontal well in roof of broken soft and low permeable coal seam[D]. Beijing: China Coal Research Institute, 2017.
[31] 张群, 葛春贵, 李伟, 等. 碎软低渗煤层顶板水平井分段压裂煤层气高效抽采模式[J]. 煤炭学报, 2018, 43(1): 150-159.
  ZHANG Qun, GE Chungui, LI Wei, et al. A new model and application of coalbed methane high efficiency production from broken soft and low permeable coal seam by roof strata-in horizontal well and staged hydraulic fracture[J]. Journal of China Coal Society, 2018, 43(1): 150-159.
[32] ZHANG J F, SUN S Q, LI S G, et al. Research and engineering practice of high-efficiency gas extraction technology by hydraulic fracturing: A case study of Huanglong Coalfield in China[J]. Arabian Journal of Geosciences, 2022, 15(10): 1012.
[33] 孙四清, 张群, 闫志铭, 等. 碎软低渗高突煤层井下长钻孔整体水力压裂增透工程实践[J]. 煤炭学报, 2017, 42(9): 2337-2344.
  SUN Siqing, ZHANG Qun, YAN Zhiming, et al. Practice of permeability enhancement through overall hydraulic fracturing of long hole in outburst-prone soft crushed coal seam with low permeability[J]. Journal of China Coal Society, 2017, 42(9): 2337-2344.
[34] 孙四清, 李文博, 张俭, 等. 煤矿井下长钻孔分段水力压裂技术研究进展及发展趋势[J]. 煤田地质与勘探, 2022, 50(8): 1-15.
  SUN Siqing, LI Wenbo, ZHANG Jian, et al. Research progress and development trend of staged hydraulic fracturing technology in long-borehole underground coal mine[J]. Coal Geology & Exploration, 2022, 50(8): 1-15.
[35] 孙四清, 李文博. 井下碎软煤层顶板加砂分段压裂瓦斯高效抽采技术[J]. 工矿自动化, 2022, 48(12): 101-107.
  SUN Siqing, LI Wenbo. High-efficiency gas extraction technology of staged fracturing roof with sand of underground broken and soft coal seam[J]. Journal of Mine Automation, 2022, 48(12): 101-107.
[36] 陈冬冬, 孙四清, 张俭, 等. 井下定向长钻孔水力压裂煤层增透技术体系与工程实践[J]. 煤炭科学技术, 2020, 48(10): 84-89.
  CHEN Dongdong, SUN Siqing, ZHANG Jian, et al. Technical system and engineering practice of coal seam permeability improvement through underground directional long borehole hydraulic fracturing[J]. Coal Science and Technology, 2020, 48(10): 84-89.
[37] 吴杰. 桑树坪二号井顶板梳状孔水力压裂瓦斯强化抽采技术[J]. 中国矿业, 2020, 29(9): 132-136.
  WU Jie. Investigation of gas enhanced extraction technology by hydraulic fracturing of comb hole in the coal seam roof of Sangshuping No. 2 well[J]. China Mining Magazine, 2020, 29(9): 132-136.
[38] 方俊, 李泉新, 许超, 等. 松软突出煤层瓦斯抽采钻孔施工技术及发展趋势[J]. 煤炭科学技术, 2018, 46(5): 130-137, 172.
  FANG Jun, LI Quanxin, XU Chao, et al. Construction technology and development tendency of gas drainage borehole in soft and outburst seam[J]. Coal Science and Technology, 2018, 46(5): 130-137, 172.
[39] 孙四清, 张俭, 安鸿涛. 松软突出煤层穿层洞穴完井钻孔瓦斯抽采实践[J]. 煤炭科学技术, 2012, 40(2): 49-51, 55.
  SUN Siqing, ZHANG Jian, AN Hongtao. Practices on gas drainage with cavity completion borehole passing through soft and outburst seam[J]. Coal Science and Technology, 2012, 40(2): 49-51, 55.
[40] 贾秉义, 李树刚, 陈冬冬, 等. 煤矿井下高压端连续水力加砂压裂增透技术与装备研究[J]. 煤田地质与勘探, 2022, 50(8): 54-61.
  JIA Bingyi, LI Shugang, CHEN Dongdong, et al. Study of technologies and equipment of continuous hydraulic sand fracturing for permeability enhancement at high pressure side of coal mine downhole[J]. Coal Geology & Exploration, 2022, 50(8): 54-61.
[41] 张杰. 气动定向钻进技术在松软煤层条带瓦斯预抽中的应用[J]. 煤田地质与勘探, 2021, 49(3): 256-261.
  ZHANG Jie. The application of pneumatic directional drilling technology in gas pre-drainage of strips in soft coal seams[J]. Coal Geology & Exploration, 2021, 49(3): 256-261.
[42] 田宏亮, 陈建, 张杰, 等. 淮南矿区软煤气动定向钻进技术与装备研究及应用[J]. 煤田地质与勘探, 2022, 50(10): 151-158.
  TIAN Hongliang, CHEN Jian, ZHANG Jie, et al. Air-driven directional drilling technology and equipment in soft coal seam of Huainan mining area[J]. Coal Geology & Exploration, 2022, 50(10): 151-158.
[43] 刘飞, 李泉新, 方俊, 等. 阳泉矿区碎软煤层深孔气动定向钻进关键技术与实践[J]. 煤田地质与勘探, 2024, 52(9): 184-191.
  LIU Fei, LI Quanxin, FANG Jun, et al. Key technology and practice of deep borehole pneumatic directional drilling in broken-soft coal seam in Yangquan mining area[J]. Coal Geology & Exploration, 2024, 52(9): 184-191.
[44] 张群, 孙四清, 降文萍. 碎软低渗煤层煤矿区煤层气勘探开发关键技术及发展方向[J]. 石油学报, 2024, 45(5): 855-865.
  ZHANG Qun, SUN Siqing, JIANG Wenping. Key technologies and development direction of CBM exploration and development in coal mine area of fractured soft and low permeability coal seams[J]. Acta Petrolei Sinica, 2024, 45(5): 855-865.
[45] 袁亮, 郭华, 李平, 等. 大直径地面钻井采空区采动区瓦斯抽采理论与技术[J]. 煤炭学报, 2013, 38(1): 1-8.
  YUAN Liang, GUO Hua, LI Ping, et al. Theory and technology of goaf gas drainage with large-diameter surface boreholes[J]. Journal of China Coal Society, 2013, 38(1): 1-8.
[46] 林海飞, 李树刚, 赵鹏翔, 等. 我国煤矿覆岩采动裂隙带卸压瓦斯抽采技术研究进展[J]. 煤炭科学技术, 2018, 46(1): 28-35.
  LIN Haifei, LI Shugang, ZHAO Pengxiang, et al. Research progress on pressure released gas drainage technology of mining cracking zone in overburden strata of coal mine in China[J]. Coal Science and Technology, 2018, 46(1): 28-35.
[47] 张小龙, 王飞, 刘红威, 等. 基于采动覆岩三维裂隙场演化规律的地面L型钻井瓦斯抽采技术[J]. 中国安全生产科学技术, 2022, 18(10): 56-61.
  ZHANG Xiaolong, WANG Fei, LIU Hongwei, et al. Study on gas drainage technology of ground L-type drilling based on evolution law of three-dimensional fracture field in mining overburden rock[J]. Journal of Safety Science and Technology, 2022, 18(10): 56-61.
[48] 赵继展. 煤矿采动区煤层气井产能数值模拟及应用研究[D]. 北京: 煤炭科学研究总院, 2018.
  ZHAO Jizhan. Study on numerical simulation and application of gob coal seam gas well productivity in longwall working face[D]. Beijing: China Coal Research Institute, 2018.
[49] 柯昌友, 温俊三, 李海贵, 等. L型井采空区瓦斯抽采技术的应用[J]. 矿业安全与环保, 2016, 43(3): 64-66, 70.
  KE Changyou, WEN Junsan, LI Haigui, et al. Application of gob gas drainage technology with L-type well[J]. Mining Safety & Environmental Protection, 2016, 43(3): 64-66, 70.
[50] 聂志宏, 徐凤银, 时小松, 等. 鄂尔多斯盆地东缘深部煤层气开发先导试验效果与启示[J]. 煤田地质与勘探, 2024, 52(2): 1-12.
  NIE Zhihong, XU Fengyin, SHI Xiaosong, et al. Outcomes and implications of pilot tests for deep coalbed methane production on the eastern margin of the Ordos Basin[J]. Coal Geology & Exploration, 2024, 52(2): 1-12.
[51] 刘克强, 王培峰, 贾军喜. 我国工厂化压裂关键地面装备技术现状及应用[J]. 石油机械, 2018, 46(4): 101-106.
  LIU Keqiang, WANG Peifeng, JIA Junxi. Status and applications of surface equipment for factory fracturing in China[J]. China Petroleum Machinery, 2018, 46(4): 101-106.
[52] 赵学良. 井地联合压裂长钻孔技术实践[J]. 煤矿安全, 2019, 50(2): 169-172.
  ZHAO Xueliang. Practice of integrated well and ground fracturing long drilling technology[J]. Safety in Coal Mines, 2019, 50(2): 169-172.
[53] 关晓辉. 工厂化压裂关键地面装备技术现状及应用研究[J]. 中国设备工程, 2024(7): 238-240.
  GUAN Xiaohui. Research on the present situation and application of key ground equipment technology for factory fracturing[J]. China Plant Engineering, 2024(7): 238-240.
[54] 徐凤银, 闫霞, 李曙光, 等. 鄂尔多斯盆地东缘深部(层)煤层气勘探开发理论技术难点与对策[J]. 煤田地质与勘探, 2023, 51(1): 115-130.
  XU Fengyin, YAN Xia, LI Shuguang, et al. Theoretical and technological difficulties and countermeasures of deep CBM exploration and development in the eastern edge of Ordos Basin[J]. Coal Geology & Exploration, 2023, 51(1): 115-130.
[55] ZHAO Z, LIU D M, CHEN M, et al. Gas and water performance from the full-cycle of coalbed methane enrichment-drainage-output: A case study of Daning-Jixian area in the eastern margin of Ordos Basin[J]. Energy Reports, 2023, 9: 3235-3247.
[56] 吴裕根, 门相勇, 娄钰. 我国“十四五”煤层气勘探开发新进展与前景展望[J]. 中国石油勘探, 2024, 29(1): 1-13.
  WU Yugen, Xiangyong MEN, LOU Yu. New progress and prospect of coalbed methane exploration and development in China during the 14th Five-Year Plan period[J]. China Petroleum Exploration, 2024, 29(1): 1-13.
[57] 孙立春, 刘佳, 李娜, 等. 鄂尔多斯盆地神府区块深部煤层气井产量主控因素及合理压裂规模优化[J]. 石油实验地质, 2025, 47(1): 43-53.
  SUN Lichun, LIU Jia, LI Na, et al. Main controlling factors of production and reasonable fracturing scale optimization of deep coalbed methane wells in Shenfu block, Ordos Basin[J]. Petroleum Geology & Experiment, 2025, 47(1): 43-53.
[58] 蒋永平, 杨松. 鄂尔多斯盆地东缘延川南区块煤层气井排水采气新工艺[J]. 油气藏评价与开发, 2021, 11(3): 384-389.
  JIANG Yongping, YANG Song. New technology of dewatering gas recovery for CBM wells in southern Yanchuan Block, eastern margin of Ordos Basin[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(3): 384-389.
[59] 谢和平. 深部岩体力学与开采理论研究进展[J]. 煤炭学报, 2019, 44(5): 1283-1305.
  XIE Heping. Research review of the state key research development program of China: Deep rock mechanics and mining theory[J]. Journal of China Coal Society, 2019, 44(5): 1283-1305.
文章导航

/