综合研究

基于多因素分析提高采收率驱替方式优选方法的研究

  • 王婷婷 ,
  • 吴贵彬 ,
  • 陈建玲 ,
  • 孙勤江 ,
  • 王正波 ,
  • 冯笑含 ,
  • 赵万春
展开
  • 1.东北石油大学电气信息工程学院,黑龙江 大庆 163318
    2.黑龙江省网络与智能控制重点实验室,黑龙江 大庆 163318
    3.中海石油(中国)有限公司天津分公司,天津 300459
    4.中国石油勘探开发研究院提高采收率国家重点实验室,北京 1000835
    5.东北石油大学石油工程学院,黑龙江 大庆 163318
    6.东北石油大学非常规油气研究所,黑龙江 大庆 163318
    7.东北石油大学陆相页岩油气成藏及高效开发教育部重点实验室,黑龙江 大庆 163318
王婷婷(1982—),女,博士,教授,主要从事油气信息与控制工程研究。地址:黑龙江省大庆市萨尔图区东北石油大学,邮政编码:163318。E-mail: wttlovework@163.com

收稿日期: 2020-09-07

  网络出版日期: 2022-09-27

基金资助

国家自然科学基金项目“页岩油藏脉动水力压裂缝网实时扩展AE演化机制分数阶方法研究”(52074088);国家自然科学基金项目“页岩局部脆性表征与压裂裂缝交互耦合演化机制研究”(51574088);国家自然科学基金项目“页岩气藏压裂岩体突变特征及多重分形缝网逾渗演化研究”(51404073);黑龙江省博士后面上(一等)资助项目“基于AE波形特征大庆探区致密油储层体积压裂缝网形成机制研究”(LBH-Z19008);东北石油大学省杰青后备人才项目“页岩压裂跨尺度造缝三维缝网体系时空演化机制研究”(SJQHB201802);东北石油大学省杰青后备人才项目“页岩油藏脉动水力压裂缝网实时扩展声发射信号传播规律研究”(SJQH202002);2020年度东北石油大学西部油田开拓专项项目“页岩油气成藏机理及高效开发”(XBYTKT202001)

Optimization of enhanced oil recovery displacement methods based on multifactor analysis

  • Tingting WANG ,
  • Guibin WU ,
  • Jianling CHEN ,
  • Qinjiang SUN ,
  • Zhengbo WANG ,
  • Xiaohan FENG ,
  • Wanchun ZHAO
Expand
  • 1. School of Electrical Engineering & Information, Northeast Petroleum University, Daqing, Heilongjiang 163318, China
    2. Key Laboratory of Network and Intelligent Control in Heilongjiang Province, Daqing, Heilongjiang 163318, China
    3. Tianjin Branch of CNOOC Ltd., Tianjin 300459, China
    4. State Key Laboratory of Enhanced Oil Recovery, Research Institute of Petroleum Exploration & Development, PetroChina, Beijing 1000835, China
    5. School of Petroleum Engineering, Northeast Petroleum University, Daqing, Heilongjiang 163318, China
    6. Institute of Unconventional Oil & Gas, Northeast Petroleum University, Daqing, Heilongjiang 163318, China
    7. Key Laboratory of Continental Shale Hydrocarbon Accumulation and Efficient Development(Northeast Petroleum University), Ministry of Education, Northeast Petroleum University, Daqing, Heilongjiang 163318, China

Received date: 2020-09-07

  Online published: 2022-09-27

摘要

为了保证在油田三次采油过程中,新的油田目标区块能够优选出最佳的采油驱替方式,以国内外典型区块三次采油驱替方式矿场应用作为基础,统计分析得到23项油藏参数作为影响采油驱替方式优选的关键参数,并通过模糊评判方法优选出目标区块合适的驱替方式。通过改进的邓氏关联法计算得到目标区块与实例应用区块的关联度,进而预测目标区块采收率,根据预测的采收率来选取最佳的驱替方式。最后,选取国内某油田的新区块作为研究实例,优选得到最佳驱替方式是火烧油层驱替方式,提出的方法为新区块的驱替方式优选提供了计算依据。

本文引用格式

王婷婷 , 吴贵彬 , 陈建玲 , 孙勤江 , 王正波 , 冯笑含 , 赵万春 . 基于多因素分析提高采收率驱替方式优选方法的研究[J]. 油气藏评价与开发, 2022 , 12(5) : 803 -808 . DOI: 10.13809/j.cnki.cn32-1825/te.2022.05.012

Abstract

In order to ensure that the best oil recovery and displacement method of the new target block of the oilfield could be selected in the process of tertiary oil recovery, based on the application of tertiary oil displacement method in typical blocks at home and abroad, 23 reservoir parameters have been studied as the key parameters that affect the displacement mode, and the fuzzy evaluation method are used in the process. And then, the correlation between the target area and the test area is calculated by the improved Deng’s correlation method, so as to predict the recovery ratio of the target area. The study of a new block of some oilfield in China verify that the best displacement mode is fire flooding. The proposed proposed method provides a calculation basis for the optimal displacement method of the new block.

参考文献

[1] JÜRGENSON G A, BITTNER C, STEIN S, et al. Chemical EOR: A multidisciplinary effort to maximize value[J]. Journal of Petroleum Technology, 2017, 69(6): 52-53.
[2] WANG T T, ZHANG T, RANJITH P G, et al. A new approach to the evaluation of rock mass rupture and brittleness under triaxial stress condition[J]. Journal of Petroleum Science and Engineering, 2020, 184.
[3] ZIJLSTRA E, VAN WUNNIK J, VAN DOREN J, et al. Accurate tool for IOR/EOR screening and estimating target recovery factors[C]// Paper SPE-169653-MS prepared at the SPE EOR Conference at Oil and Gas West Asia held in Muscat, Oman, 31 March-2 April 2014.
[4] 秦积舜, 韩海水, 刘晓蕾. 美国CO2驱油技术应用及启示[J]. 石油勘探与开发, 2015, 42(2):209-216.
[4] QIN Jishun, HAN Haishui, LIU Xiaolei. Application and enlightenment of carbon dioxide flooding in the United States of America[J]. Petroleum Exploration and Development, 2015, 42(2): 209-216.
[5] 赵文山. 三次采油阶段提高采收率的措施[J]. 化工设计通讯, 2017, 43(5):50.
[5] ZHAO Wenshan. Measures to improve oil recovery in tertiary oil recovery[J]. Chemical Design Newsletter, 2017, 43(5): 50.
[6] 朱友益, 侯庆锋, 简国庆, 等. 化学复合驱技术研究与应用现状及发展趋势[J]. 石油勘探与开发, 2013, 40(1):90-96.
[6] ZHU Youyi, HOU Qingfeng, JIAN Guoqing, et al. Current development and application of chemical combination flooding technique[J]. Petroleum exploration and development, 2013, 40(1): 90-96.
[7] 刘培军, 陈金辉, 申权, 等. 三次采油方法及原理综述[J]. 化工管理, 2013, 26(8):16.
[7] LIU Peijun, CHEN Jinhui, SHEN Quan, et al. Summary of tertiary oil recovery methods and principles[J]. Chemical Management, 2013, 26(8): 16.
[8] 田静. 三次采油技术的现状及发展趋势[J]. 科学中国人, 2015, 21(29):45.
[8] TIAN Jing. The status of enhanced oil recovery research and Development trend[J]. Scientific Chinese, 2015, 21(29): 45.
[9] 刘哲. 浅析三次采油技术的现状及发展趋势[J]. 化学工程与装备, 2016, 45(4):213-214.
[9] LIU Zhe. Analysis on the current situation and development trend of tertiary oil recovery technology[J]. Chemical Engineering & Equipment. 2016, 45(4): 213-214.
[10] KOROTEEV D, DINARIEV O, EVSEEV N, et al. Application of digital rock technology for chemical EOR screening[C]// Paper SPE-165258-MS presented at the SPE Enhanced Oil Recovery Conference, Kuala Lumpur, Malaysia, July 2013.
[11] 张金川, 刘树根, 魏晓亮, 等. 页岩含气量评价方法[J]. 石油与天然气地质, 2021, 42(1):28-40.
[11] ZHANG Jinchuan, LIU Shugen, WEI Xiaoliang, et al. Evaluation of gas content in shale[J]. Oil & Gas Geology, 2021, 42(1): 28-40.
[12] 雷柏茂, 李江燕, 梁佩博, 等. 基于模糊综合评判和层次分析法的中子管故障风险评估[J]. 原子能科学技术, 2019, 53(11):2247-2256.
[12] LEI Bomao, LI Jiangyan, LIANG Peibo, et al. Risk assessment of neutron tube failure based on fuzzy comprehensive evaluation and analytic hierarchy process[J]. Atomic Energy Science and Technology, 2019, 53(11): 2247-2256.
[13] 张云鹏, 马雪坤, 王浩. 基于模糊综合评判的凤良铁矿地质环境影响评价研究[J]. 化工矿物与加工, 2018, 47(4):4.
[13] ZHANG Yunpeng, MA Xuekun, WANG Hao. Assessment of impact of geological environment in Fengliang Iron Mine based on fuzzy comprehensive evaluation method[J]. Industrial Minerals & Processing, 2018, 47(4): 4.
[14] 马婧. 基于模糊综合评判法的油田水驱开发效果评价[J]. 辽宁化工, 2016, 45(6):785-787.
[14] MA Jing. Evaluation of oilfield water flooding development effect based on the fuzzy comprehensive evaluation method[J]. Liaoning Chemical Industry, 2016, 45(6): 785-787.
[15] ZERAFAT M, AYATOLLAHI SH, MEHRANBOD N. Bayesian network analysis as a tool for efficient EOR screening[C]// Paper SPE-143282-MS presented at the SPE Enhanced Oil Recovery Conference, Kuala Lumpur, Malaysia, July 2011.
[16] WEI Y, GAO YQ, ZENG K F. The limitation of Deng’s relevance degree and the evolution of relevance axiom[J]. Journal of applied functional analysis, 2015, 17(4): 391-399.
[17] 赵文山. 三次采油阶段提高采收率的措施[J]. 化工设计通讯, 2017, 43(5):50.
[17] ZHAO Wenshan. Measures to improve oil recovery in three-stage oil recovery[J]. Chemical Engineering Design Communications, 2017, 43(5): 50.
[18] 高双华, 姚国平, 蔡晓梅, 等. 二次聚合物驱提高采收率技术[J]. 新疆石油天然气, 2015, 11(1):51-54.
[18] GAO Shuanghua, YAO Guoping, CAI Xiaomei, et al. The improve oil recovery technology of second polymer flooding[J]. Xinjiang Oil & Gas, 2015, 11(1): 51-54.
[19] 朱友益, 侯庆锋, 简国庆, 等. 化学复合驱技术研究与应用现状及发展趋势[J]. 石油勘探与开发, 2013, 40(1):90-96.
[19] ZHU Youyi, HOU Qingfeng, JIAN Guoqing, et al. Current development and application of chemical combination flooding technique[J]. Petroleum Exploration and Development, 2013, 40(1): 90-96.
[20] 胡蓉蓉, 姚军, 王晨晨, 等. 缝洞型碳酸盐岩油藏非混相气驱采收率影响因素[J]. 新疆石油地质, 2015, 36(4):470-474.
[20] HU Rongrong, YAO Jun, WANG Chenchen, et al. Influence factors of immiscible gas flooding recovery in fractured-vuggy carbonate reservoirs[J]. Xinjiang Petroleum Geology, 2015, 36(4): 470-474.
[21] 康志江, 李阳, 计秉玉, 等. 碳酸盐岩缝洞型油藏提高采收率关键技术[J]. 石油与天然气地质, 2020, 4(6):434-441.
[21] KANG Zhijiang, LI Yang, JI Bingyu, et al. Key technologies for EOR in fractured-vuggy carbonate reservoirs[J]. Oil & Gas Geology, 2020, 41(6): 434-441.
文章导航

/