油气藏评价与开发 >
2023 , Vol. 13 >Issue 4: 519 - 524
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2023.04.014
特高含水油藏不同井网流场调整模拟与驱油效率
收稿日期: 2022-12-12
网络出版日期: 2023-09-01
Oil displacement efficiency based on different well pattern adjustment simulation in high water cut reservoirs
Received date: 2022-12-12
Online published: 2023-09-01
流场调整是注水开发油田特高含水后期挖掘剩余油的有效手段。注水开发油田进入高含水开发期后,油水井间逐步形成优势流场,注入水无效循环,降低油藏开发效果。根据流场调整的工作原理,利用Python语言进行编程,建立由标准行列式井网排列为基础的流场调整模型,并进行网格划分,分别将井网流场流线转变角度27°、45°,采用有限差分方法,对流场调整前后的优势流场范围进行二维数值模拟,得出九点法和五点法调整井网模拟显示驱油效率高,M形井网驱油效率相对较低,转流线调整45°效果较好。上述流场调整模拟效果对井网调整提高高含水油藏原油采收率具有一定参考价值。
杨冰 , 傅强 , 官敬涛 , 李林祥 , 潘昊宇 , 宋宏斌 , 秦婷婷 , 朱志伟 . 特高含水油藏不同井网流场调整模拟与驱油效率[J]. 油气藏评价与开发, 2023 , 13(4) : 519 -524 . DOI: 10.13809/j.cnki.cn32-1825/te.2023.04.014
The adjustment of the flow field proves to be an effective way for enhancing the recovery of remaining oil during the high water cut development stage in a water-flooding oilfield. As the water flooding oilfield enters the high water cut development stage, a dominant flow field gradually forms between oil and water wells, resulting in the ineffective circulation of injected water. As a result, the effect of reservoir development is reduced. To address this issue, a flow field adjustment model is established based on standard determinant well pattern arrangement using Python programming language, guided by the working principle of flow field adjustment. In this model, the flow field streamlines transition angles are 27°, and 45° respectively. The finite difference method is employed to simulate the dominant flow field range before and after the adjustment. The results demonstrate that the nine-spot method and the five-spot method could enhance the oil displacement efficiency, while the flooding efficiency of the M-shaped well-mesh is relatively low. Moreover, the 45°-streamline transition proves to be particularly beneficial for oil exploitation during the high water cut development stage in a water-flooding oilfield. The study holds significant guiding significance for adjusting the well pattern and enhancing the recovery efficiency, thereby facilitating the extraction of remaining oil in the high water cut development stage.
[1] | DU Q J, PAN G M, HOU J, et al. Study of the mechanisms of streamline-adjustment-assisted heterogeneous combination flooding for enhanced oil recovery for post-polymer-flooded reservoirs[J]. Petroleum Science, 2019, 16(3): 606-618. |
[2] | GUO Q, MENG L X. Study on evaluation and reconstruction of reservoir seepage field in high water cut stage based on analysis of seepage characteristics[J]. Journal of Petroleum Exploration and Production Technology, 2019, 9(1): 417-426. |
[3] | JIA H, DENG L H. Water flooding flowing area identification for oil reservoirs based on the method of streamline clustering artificial intelligence[J]. Petroleum Exploration and Development, 2018, 45(2): 328-335. |
[4] | 张健, 梁丹, 康晓东, 等. 海上稠油油田热水化学驱油技术研究[J]. 中国海上油气, 2021, 33(5): 87-93. |
[4] | ZHANG Jian, LIANG Dan, KANG Xiaodong, et al. Study on hot water chemical flooding technology in offshore heavy oil field[J]. China Offshore Oil and Gas, 2021, 33(5): 87-93. |
[5] | 李义, 刘平德, 张松. 表面活性聚合物驱油剂的合成及性能研究[J]. 石油与天然气化工, 2021, 50(6): 81-86. |
[5] | LI Yi, LIU Pingde, ZHANG Song. Study of preparation and properties of surface-active polymers for oil displacement agent[J]. Chemical Engineering of Oil & Gas, 2021, 50(6): 81-86. |
[6] | 秦婷婷, 傅强, 李林祥, 等. 非均质高含水油藏流场调整提高采收率研究——以孤东油田七区西区块馆陶组为例[J]. 石油地质与工程, 2021, 35(3): 67-72. |
[6] | QIN Tingting, FU Qiang, LI Linxiang, et al. Study on improving oil recovery by flow field adjustment in heterogeneous high water cut reservoir: By taking Guantao formation from the west block of block 7 of Gudong oilfield as an example[J]. Petroleum Geology and Engineering, 2021, 35(3): 67-72. |
[7] | 吴公益, 赵梓平, 吴波. 苏北不同类型油藏CO2驱开发模式及经济效益评价[J]. 油气藏评价与开发, 2021, 11(6): 864-870. |
[7] | WU Gongyi, ZHAO Ziping, WU Bo. CO2 flooding development models and economic benefit evaluation of different types of reservoirs in subei basin[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(6): 864-870. |
[8] | 赵世杰, 李越, 傅强, 等. 孤东油田薄层边际油藏特征及挖潜研究[J]. 石油地质与工程, 2021, 35(5): 44-50. |
[8] | ZHAO Shijie, LI Yue, FU Qiang, et al. Study on characteristics and potential tapping of thin layer marginal reservoir in Gudong Oilfield[J]. Petroleum Geology & Engineering, 2021, 35(5): 44-50. |
[9] | 毕永斌, 张雪娜, 马晓丽, 等. 复杂断块油藏开发潜力分析方法[J]. 石油地质与工程, 2021, 35(5): 56-61. |
[9] | BI Yongbin, ZHANG Xuena, MA Xiaoli, et al. Analysis method of development potential of complex fault block reservoir[J]. Petroleum Geology & Engineering, 2021, 35(5): 56-61. |
[10] | 李林祥, 谭河清, 马建波, 等. 二元复合驱后油藏流场调整提高采收率技术——以孤东油田六区Ng54-Ng68单元为例[J]. 长江大学学报(自然科学版), 2019, 16(12): 31-36. |
[10] | LI Linxiang, TAN Heqing, MA Jianbo, et al. EOR technology of reservoir flow field adjustment after binary composite flooding: By taking unit Ng54-Ng68 in Block 6 of Gudong Oilfield for example[J]. Journal of Yangtze University(Natural Science Edition), 2019, 16(12): 31-36. |
[11] | 李振泉, 郭长春, 王军, 等. 特高含水期油藏剩余油分布新认识——以孤岛油田中一区Ng上3砂组为例[J]. 油气地质与采收率, 2019, 26(6): 19-27. |
[11] | LI Zhenquan, GUO Changchun, WANG Jun, et al. New understanding of remaining oil distribution in oil reservoirs at extra-high water-cut stage: A case of Upper Ng3 sand group in Zhongyi area, Gudao Oilfield[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(6): 19-27. |
[12] | 邹雨, 王国建, 卢丽, 等. 纳米孔隙中页岩气扩散模拟实验和数学模型分析[J]. 石油实验地质, 2021, 43(5): 844-854. |
[12] | ZOU Yu, WANG Guojian, LU Li, et al. Simulation experiment and mathematical model analysis for shale gas diffusion in nano-scale pores[J]. Petroleum Geology & Experiment, 2021, 43(5): 844-854. |
[13] | 张岩, 王勇飞, 王琼仙, 等. 川西坳陷新场气田沙二段气藏储层物性与渗流特征[J]. 石油地质与工程, 2021, 35(1): 52-55. |
[13] | ZHANG Yan, WANG Yongfei, WANG Qiongxian, et al. Reservoir physical properties and seepage characteristics of the second member of Shahejie formation in Xinchang gas field, western Sichuan depression[J]. Petroleum Geology & Engineering, 2021, 35(1): 52-55. |
[14] | 李瑞轩, 黄云龙, 李源. 油藏渗流模型与数值模拟技术研究进展[J]. 石油化工应用, 2021, 40(7): 11-15. |
[14] | LI Ruixuan, HUANG Yunlong, LI Yuan. Research progress of reservoir seepage model and numerical simulation technology[J]. Petrochemical Industry Application, 2021, 40(7): 11-15. |
[15] | 周军, 李传钱, 蒲鹤, 等. 装卸作业接头密封圈失效LNG泄漏数值模拟研究[J]. 石油与天然气化工, 2021, 50(5): 104-112. |
[15] | ZHOU Jun, LI Chuanqian, PU He, et al. Numerical simulation of LNG leakage due to failure of joint sealing ring in loading and unloading operation[J]. Chemical Engineering of Oil & Gas, 2021, 50(5): 104-112. |
[16] | 何逸凡, 陈建波, 马铨峥, 等. 基于动态残余油饱和度表征的特高含水期油田数值模拟[J]. 中国海上油气, 2022, 34(3): 105-111. |
[16] | HE Yifan, CHEN Jianbo, MA Quanzheng, et al. Numerical simulation of oilfield in ultra-high water cut stage based on dynamic residual oil saturation[J]. China Offshore Oil and Gas, 2022, 34(3): 105-111. |
[17] | 孟祥海, 刘同敬, 李彦阅, 等. 基于自示踪的聚驱油藏窜流通道量化模型及应用[J]. 中国海上油气, 2022, 34(5): 108-116. |
[17] | MENG Xianghai, LIU Tongjing, LI Yanyue, et al. Modeling and application of channeling path quantification during polymer flooding process based on self-tracing method[J]. China Offshore Oil and Gas, 2022, 34(5): 108-116. |
[18] | MORTENSEN M, LANGTANGEN H P. High performance Python for direct numerical simulations of turbulent flows[J]. Computer Physics Communications, 2016, 203: 53-65. |
[19] | 王维, 王贤君, 王晓娟, 等. 大庆油田致密油水平井段内多簇布缝数值模拟优化研究[J]. 石油地质与工程, 2022, 36(5): 101-105. |
[19] | WANG Wei, WANG Xianjun, WANG Xiaojuan, et al. Numerical simulation and optimization of multi-cluster fracture distribution[J]. Petroleum Geology & Engineering, 2022, 36(5): 101-105. |
[20] | 徐传福, 王曦, 刘舒, 等. 基于Python的大规模高性能LBM多相流模拟[J]. 计算机科学, 2020, 47(1): 17-23. |
[20] | XU Chuanfu, WANG Xi, LIU Shu, et al. Large-scale high-performance lattice boltzmann multi-phase flow simulations based on Python[J]. Computer Science, 2020, 47(1): 17-23. |
[21] | 王登岳, 张宏伟. 基于Python求解偏微分方程的有限差分法[J]. 计算机时代, 2016, 293(11): 14-16. |
[21] | WANG Dengyue, ZHANG Hongwei. Python programmed finite difference method for solving partial differential equations[J]. Computer Era, 2016, 293(11): 14-16. |
/
〈 | 〉 |