油气勘探

深层超致密砂岩孔隙演化特征及“甜点”储层发育模式——以川西坳陷东部斜坡须家河组二段为例

  • 程炳杰 ,
  • 廖哲渊 ,
  • 吕正祥 ,
  • 谢诚 ,
  • 蔡永煌 ,
  • 刘四兵 ,
  • 李峰 ,
  • 张世华
展开
  • 1.成都理工大学能源学院(页岩气现代产业学院),四川 成都 610059
    2.油气藏地质及开发工程全国重点实验室(成都理工大学),四川 成都 610059
    3.中国石化西南油气分公司勘探开发研究院,四川 成都 610041
程炳杰(1999—),男,在读硕士研究生,主要从事储层地质方向的研究工作。地址:四川省成都市成华区二仙桥东三路1号,邮政编码:610059。E-mail: 2023050144@stu.cdut.edu.cn
廖哲渊(1999—),男,在读博士研究生,主要从事储层地质方向的研究工作。地址:四川省成都市成华区二仙桥东三路1号,邮政编码:610059。E-mail: 2021020212@stu.cdut.edu.cn

收稿日期: 2024-08-29

  网络出版日期: 2025-05-28

基金资助

国家自然科学基金项目“四川盆地中西部深层-浅层致密砂岩流体跨层混合示踪、过程重建及成储-成藏效应”(42472180)

Pore evolution characteristics and “sweet spot” reservoir development model in deep ultra-tight sandstones: A case study of the second member of Xujiahe Formation in eastern slope of western Sichuan Depression

  • CHENG Bingjie ,
  • LIAO Zheyuan ,
  • Zhengxiang LYU ,
  • XIE Cheng ,
  • CAI Yonghuang ,
  • LIU Sibing ,
  • LI Feng ,
  • ZHANG Shihua
Expand
  • 1. College of Energy (College of Modern Shale Gas Industry), Chengdu University of Technology, Chengdu, Sichuan 610059, China
    2. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu, Sichuan 610059, China
    3. Research Institute of Exploration and Development, Sinopec Southwest Oil & Gas Company, Chengdu, Sichuan 610041, China

Received date: 2024-08-29

  Online published: 2025-05-28

摘要

四川盆地具有丰富的致密砂岩气资源,目前对川西坳陷东部斜坡超深埋藏超致密砂岩储层孔隙演化的研究较为薄弱。利用岩心观察、铸体薄片鉴定、扫描电镜、碳氧同位素、包裹体均一温度等分析方法,结合埋藏史、热史,明确了川西坳陷东部斜坡须家河组二段(以下简称须二段)深埋藏超致密砂岩储层孔隙演化与油气充注耦合特征。须二段储层以岩屑砂岩、岩屑石英砂岩为主,填隙物主要为自生石英和碳酸盐,储集空间以粒内孔为主。各亚段储层致密化时期具有差异性,上亚段因泥岩岩屑等较高塑性物质,抗压实能力弱,在中晚侏罗世致密;此后在持续深埋和压溶石英双重破坏作用下,中、下亚段在晚侏罗世致密。白垩纪末,构造抬升形成的裂缝促进中、下亚段发生溶蚀,储层孔隙度提高至5%左右,渗透率提高更为显著。主要具有2期油气充注,上亚段耦合关系较差,致密化较早,不利于油气充注,不利于天然气富集;中、下亚段油气主充注期早于储层致密化时期,有利于天然气富集成藏。川西坳陷东部斜坡须二段具有古圈闭+通源断裂叠合型、古圈闭+内部烃源岩+晚期断裂叠合型、古圈闭+通源断裂+晚期断裂叠合型等3种“甜点”储层发育模式。研究内容为深埋藏超致密砂岩储层演化-油气充注耦合特征研究提供实例分析以及理论指导。

本文引用格式

程炳杰 , 廖哲渊 , 吕正祥 , 谢诚 , 蔡永煌 , 刘四兵 , 李峰 , 张世华 . 深层超致密砂岩孔隙演化特征及“甜点”储层发育模式——以川西坳陷东部斜坡须家河组二段为例[J]. 油气藏评价与开发, 2025 , 15(3) : 394 -405 . DOI: 10.13809/j.cnki.cn32-1825/te.2025.03.006

Abstract

The Sichuan Basin has rich resources of tight sandstone gas. Currently, research on the pore evolution of ultra-deep, ultra-tight sandstone reservoirs in the eastern slope of the western Sichuan Depression is relatively scarce. Using core observation, cast thin section identification, scanning electron microscopy, carbon-oxygen isotope analysis, and homogenization temperature of fluid inclusion, combined with burial history and thermal history, the coupling characteristics of pore evolution and oil and gas charge in the ultra-deep, ultra-tight sandstone reservoirs in the second member of Xujiahe Formation (hereinafter referred to as Xu 2 member) on the eastern slope of the western Sichuan Depression were clarified. The Xu 2 member reservoir is mainly composed of lithic sandstone and lithic quartz sandstone, with authigenic quartz and carbonates as the primary cementing materials. The storage space is dominated by intragranular pores. The densification period of the reservoir varies among different submembers. The upper submember is less resistant to compaction due to the presence of higher plastic materials like mudstone clasts, and it became compacted during the Middle to Late Jurassic. Subsequently, under continuous deep burial and the dual destructive effects of pressure dissolution and quartz, the middle and lower submembers became compacted during the Late Jurassic. At the end of the Cretaceous, tectonic uplift led to the formation of fractures that promoted the dissolution of the middle and lower submembers, increasing the reservoir porosity to around 5%, with a more significant increase in permeability. There were two main periods of oil and gas charge. The upper submember had a poorer coupling relationship, with early densification that was unfavorable for oil and gas charge and natural gas accumulation. In contrast, the main oil and gas charge period for the middle and lower submembers occurred prior to the densification of the reservoir, which was favorable for natural gas accumulation and reservoir formation. The Xu 2 member on the eastern slope of the western Sichuan Depression exhibits three “sweet spot” reservoir development modes: ancient trap+source fracture superposition, ancient trap+internal source rock+late fracture superposition, and ancient trap+source fracture+late fracture superposition. The study provides examples and theoretical guidance for understanding the evolution-oil and gas charge coupling characteristics of deeply buried ultra-tight sandstone reservoirs.

参考文献

1 杨佳颖, 蒋有录, 蔡国钢, 等. 深层砂岩储层特征及成岩差异演化过程: 以辽河坳陷东部凹陷牛居—长滩洼陷沙三上亚段为例[J]. 天然气地球科学, 2022, 33(2): 233-242.
  YANG Jiaying, JIANG Youlu, CAI Guogang, et al. Reservoir characteristics and differential diagenetic evolution process of deep buried sandstone reservoirs: Case study of the upper Es3 in Niuju-Changtan subsag of Eastern Sag, Liaohe Depression[J]. Natural Gas Geoscience, 2022, 33(2): 233-242.
2 林良彪, 余瑜, 南红丽, 等. 四川盆地川西坳陷上三叠统须家河组四段储层致密化过程及其与油气成藏的耦合关系[J]. 石油与天然气地质, 2021, 42(4): 816-828.
  LIN Liangbiao, YU Yu, Hongli NAN, et al. Reservoir tightening process and its coupling relationship with hydrocarbon accumulation in the fourth member of Upper Triassic Xujiahe Formation in the Western Sichuan Depression, Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(4): 816-828.
3 张小菊, 邓虎成, 徐争启, 等. “双源”控制的窄河道致密砂岩气富集高产模式: 以四川盆地金秋气田中侏罗统沙溪庙组为例[J]. 天然气工业, 2023, 43(10): 34-46.
  ZHANG Xiaoju, DENG Hucheng, XU Zhengqi, et al. Accumulation and high-yield model of narrow channel tight sandstone gas controlled by “double-sources”: A case study of Middle Jurassic Shaximiao Formation of Jinqiu gas field in the Sichuan Basin[J]. Natural Gas Industry, 2023, 43(10): 34-46.
4 王香增, 乔向阳, 张磊, 等. 鄂尔多斯盆地东南部致密砂岩气勘探开发关键技术创新及规模实践[J]. 天然气工业, 2022, 42(1): 102-113.
  WANG Xiangzeng, QIAO Xiangyang, ZHANG Lei, et al. Innovation and scale practice of key technologies for the exploration and development of tight sandstone gas reservoirs in Yan’an Gas Field of southeastern Ordos Basin[J]. Natural Gas Industry, 2022, 42(1): 102-113.
5 蒋有录, 张文杰, 刘华, 等. 饶阳凹陷古近系储层流体包裹体特征及成藏期确定[J]. 中国石油大学学报(自然科学版), 2018, 42(4): 23-33.
  JIANG Youlu, ZHANG Wenjie, LIU Hua, et al. Properties of fluid inclusions and periods of hydrocarbon accumulation in Paleogene reservoirs in Raoyang Depression[J]. Journal of China University of Petroleum (Edition of Natural Science), 2018, 42(4): 23-33.
6 王飞宇, 冯伟平, 关晶, 等. 含油气盆地流体包裹体分析的关键问题和意义[J]. 矿物岩石地球化学通报, 2018, 37(3): 441-450.
  WANG Feiyu, FENG Weiping, GUAN Jing, et al. Key Questions of the Fluid Inclusion Analysis in Petroliferous Basins and their Significances[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2018, 37(3): 441-450.
7 王艳忠, 操应长, 葸克来, 等. 碎屑岩储层地质历史时期孔隙度演化恢复方法: 以济阳坳陷东营凹陷沙河街组四段上亚段为例[J]. 石油学报, 2013, 34(6): 1100-1111.
  WANG Yanzhong, CAO Yingchang, XI Kelai, et al. A recovery method for porosity evolution of clastic reservoirs with geological time: a case study from the upper submember of Es4 in the Dongying depression, Jiyang Subbasin[J]. Acta Petrolei Sinica, 2013, 34(6): 1100-1111.
8 李中超, 周勇水, 刘平, 等. 普光地区须家河组致密砂岩储层成岩作用及孔隙演化[J]. 断块油气田, 2023, 30(3): 353-362.
  LI Zhongchao, ZHOU Yongshui, LIU Ping, et al. Diagenesis and pore evolution of tight sandstone reservoirs of Xujiahe Formation in Puguang area[J]. Fault-Block Oil & Gas Field, 2023, 30(3): 353-362.
9 罗静兰, 刘新社, 付晓燕, 等. 岩石学组成及其成岩演化过程对致密砂岩储集质量与产能的影响: 以鄂尔多斯盆地上古生界盒8天然气储层为例[J]. 地球科学, 2014, 39(5): 537- 545.
  LUO Jinglan, LIU Xinshe, FU Xiaoyan, et al. Impact of petrologic components and their diagenetic evolution on tight sandstone reservoir quality and gas yield: A case study from He8 gas-bearing reservoir of upper Paleozoic in northern Ordos Basin[J]. Earth Science, 2014, 39(5): 537-545.
10 曹桐生, 罗龙, 谭先锋, 等. 致密砂岩储层成因及其孔隙演化过程: 以杭锦旗十里加汗地区下石盒子组为例[J]. 断块油气田, 2021, 28(5): 598-603.
  CAO Tongsheng, LUO Long, TAN Xianfeng, et al. Genesis and pore evolution of tight sandstone reservoir: Taking Lower Shihezi Formation in the Shilijiahan block of Hangjinqi area as an example[J]. Fault-Block Oil & Gas Field, 2021, 28(5): 598-603.
11 CUI Y F, WANG G W, JONES S J, et al. Prediction of diagenetic facies using well logs-A case study from the upper Triassic Yanchang Formation, Ordos Basin, China[J]. Marine and Petroleum Geology, 2017, 81: 50-65.
12 LUO L, GAO X, MENG W, et al. The origin and alteration of calcite cement in tight sandstones of the Jurassic Shishugou Group, Fukang Sag, Junggar Basin, NW China: Implications for fluid-rock interactions and porosity evolution[J]. Australian Journal of Earth Sciences, 2018, 65(3): 427-445.
13 赵承锦, 蒋有录, 刘景东, 等. 基于正演与反演结合的孔隙度演化恢复方法: 以川东北地区须家河组为例[J]. 石油学报, 2021, 42(6): 708-723.
  ZHAO Chengjin, JIANG Youlu, LIU Jingdong, et al. A recovery method of porosity evolution based on forward and inverse analyses: A case study of the tight sandstone of Xujiahe Formation, Northeast Sichuan Basin[J]. Acta Petrolei Sinica, 2021, 42(6): 708-723.
14 高志勇, 马建英, 崔京钢, 等. 埋藏(机械)压实—侧向挤压地质过程下深层储层孔隙演化与预测模型[J]. 沉积学报, 2018, 36(1): 176-187.
  GAO Zhiyong, MA Jianying, CUI Jinggang, et al. Deep reservoir pore evolution model of a geological process from burial compaction to lateral extrusion[J]. Acta Sedimentologica Sinica, 2018, 36(1): 176-187.
15 张道伟, 杨雨. 四川盆地陆相致密砂岩气勘探潜力与发展方向[J]. 天然气工业, 2022, 42(1): 1-11.
  ZHANG Daowei, YANG Yu. Exploration potential and development direction of continental tight sandstone gas in the Sichuan Basin[J]. Natural Gas Industry, 2022, 42(1): 1-11.
16 郑和荣, 刘忠群, 徐士林, 等. 四川盆地中国石化探区须家河组致密砂岩气勘探开发进展与攻关方向[J]. 石油与天然气地质, 2021, 42(4): 765-783.
  ZHENG Herong, LIU Zhongqun, XU Shilin, et al. Progress and key research directions of tight gas exploration and development in Xujiahe Formation, Sinopec exploration areas, Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(4): 765-783.
17 卞从胜, 王红军, 汪泽成, 等. 四川盆地致密砂岩气藏勘探现状与资源潜力评价[J]. 中国工程科学, 2012, 14(7): 74-80.
  BIAN Congsheng, WANG Hongjun, WANG Zecheng, et al. Exploration status and potential evaluation of tight gas in Sichuan Basin[J]. Strategic Study of CAE, 2012, 14(7): 74-80.
18 郑志红, 李登华, 白森舒, 等. 四川盆地天然气资源潜力[J]. 中国石油勘探, 2017, 22(3): 12-20.
  ZHENG Zhihong, LI Denghua, BAI Senshu, et al. Resource potentials of natural gas in Sichuan Basin[J]. China Petroleum Exploration, 2017, 22(3): 12-20.
19 许晗, 刘明洁, 张庄, 等. 四川盆地川西坳陷须家河组三段致密砂岩储层成岩作用及孔隙演化[J]. 天然气地球科学, 2022, 33(3): 344-357.
  XU Han, LIU Mingjie, ZHANG Zhuang, et al. Diagenesis and porosity evolution of the 3rd member of Xujiahe Formation tight sandstone reservoir in the Western Sichuan Depression, Sichuan Basin[J]. Natural Gas Geoscience, 2022, 33(3): 344-357.
20 黄莉莎, 闫建平, 刘明洁, 等. 深层致密砂岩气储层成岩相测井识别及应用: 以川西坳陷大邑须家河组须三段为例[J]. 中国矿业大学学报, 2022, 51(1): 107-123.
  HUANG Lisha, YAN Jianping, LIU Mingjie, et al. Diagenetic facies logging identification and application of deep tight sandstone gas reservoir: A case study of the third member of Xujiahe formation in Dayi area of western Sichuan depression[J]. Journal of China University of Mining & Technology, 2022, 51(1): 107-123.
21 刘忠群, 徐士林, 刘君龙, 等. 四川盆地川西坳陷深层致密砂岩气藏富集规律[J]. 天然气工业, 2020, 40(2): 31-40.
  LIU Zhongqun, XU Shilin, LIU Junlong, et al. Enrichment laws of deep tight sandstone gas reservoirs in the Western Sichuan Depression, Sichuan Basin[J]. Natural Gas Industry, 2020, 40(2): 31-40.
22 王志康, 林良彪, 余瑜, 等. 川西新场地区须家河组第二段优质储层主控因素[J]. 成都理工大学学报(自然科学版), 2020, 47(6): 661-672.
  WANG Zhikang, LIN Liangbiao, YU Yu, et al. The main controlling factors of high quality reservoir in the second member of Xujiahe Formation in Xinchang area, Western Sichuan, China[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2020, 47(6): 661-672.
23 王志康, 林良彪, 余瑜, 等. 川西新场地区须二段物源特征及其对储层物性的控制[J]. 断块油气田, 2022, 29(2): 207-213.
  WANG Zhikang, LIN Liangbiao, YU Yu, et al. Provenance characteristics and its controlling on reservoir physical properties of the second Member of the Xujiahe Formation in Xinchang area,western Sichuan Depression[J]. Fault-Block Oil & Gas Field, 2022, 29(2): 207-213.
24 罗龙, 高先志, 孟万斌, 等. 深埋藏致密砂岩中相对优质储层形成机理: 以川西坳陷新场构造带须家河组为例[J]. 地球学报, 2017, 38(6): 930-944.
  LUO Long, GAO Xianzhi, MENG Wanbin, et al. The formation mechanism of the relatively high-quality reservoir in tight sandstones with deep burial: A case study of Xujiahe formation in Xinchang structural belt of western Sichuan depression[J]. Acta Geoscientica Sinica, 2017, 38(6): 930-944.
25 李王鹏, 刘忠群, 胡宗全, 等. 四川盆地川西坳陷新场须家河组二段致密砂岩储层裂缝发育特征及主控因素[J]. 石油与天然气地质, 2021, 42(4): 884-897.
  LI Wangpeng, LIU Zhongqun, HU Zongquan, et al. Characteristics of and main factors controlling the tight sandstone reservoir fractures in the 2nd member of Xujiahe Formation in Xinchang area, Western Sichuan Depression, Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(4): 884-897.
26 熊亮, 曹勤明, 张玲, 等. 细粒沉积岩岩相划分类型及其油气勘探意义: 以四川盆地川西坳陷须家河组五段为例[J]. 油气藏评价与开发, 2023, 13(5): 548-558.
  XIONG Liang, CAO Qinming, ZHANG Ling, et al. Types of fine-grained sedimentary rocks assemblage and its significance for shale oil exploration: A case study of the fifth member of Xujiahe Formation in western Sichuan Depression, Sichuan Basin[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 548-558.
27 吴文静, 吴东胜. 川西坳陷东坡断裂优势运移通道预测[J]. 中国科技论文, 2019, 14(5): 476-480.
  WU Wenjing, WU Dongsheng. Prediction of fracture dominant migrating channel of eastern slope in western Sichuan depression[J]. China Sciencepaper, 2019, 14(5): 476-480.
28 朱讯, 冯林杰, 吕乐, 等. 致密砂岩储层成岩相及孔隙演化过程: 以川中北部地区沙二~1亚段为例[J]. 断块油气田, 2022, 29(2): 265-270.
  ZHU Xun, FENG Linjie, Le LYU, et al. Diagenetic facies and pore evolution of tight sandstone reservoir: Taking Sha21 sub-member in the north of Central Sichuan Basin as an example[J]. Fault-Block Oil & Gas Field, 2022, 29(2): 265-270.
29 覃硕, 石万忠, 王任, 等. 鄂尔多斯盆地杭锦旗地区盒一段致密砂岩储层特征及其主控因素[J]. 地球科学, 2022, 47(5): 1604-1618.
  QIN Shuo, SHI Wanzhong, WANG Ren, et al. Characteristics of tight sandstone reservoirs and their controlling factors of He-1 member in Hangjinqi Block, Ordos Basin[J]. Earth Science, 2022, 47(5): 1604-1618.
30 王爱, 钟大康, 刘忠群, 等. 深层致密砂岩储层特征及物性控制因素: 以川东北元坝西地区须二下亚段为例[J]. 沉积学报, 2022, 40(2): 410-421.
  WANG Ai, ZHONG Dakang, LIU Zhongqun, et al. Characteristics of deep tight sandstone reservoirs and their controlling factors of physical properties: A case study of the Xu-2 member in the western Yuanba area of the northeastern Sichuan Basin, China[J]. Acta Sedimentologica Sinica, 2022, 40(2): 410-421.
31 吕正祥. 川西坳陷成藏年代学及流体演化历史研究[R]. 成都: 中石化西南油气分公司勘探开发研究院, 2005: 69-70.
  Zhengxiang LYU. Study on the accumulation chronology and fluid evolution history of the western Sichuan depression[R]. Chengdu: Exploration and Development Research Institute of Sinopec Southwest Oil and Gas Branch, 2005: 69-70.
32 FRIEDMAN I, O’NEIL J R. Compilation of stable isotope fractionation factors of geochemical interest[J]. Data of Geochemistry, 1977.
33 SCHERER M. Parameters influencing porosity in sandstones: A model for sandstone porosity prediction[J]. AAPG Bulletin, 1987, 71(5): 485-491.
34 BEARD D C, WEYL P K. Influence of Texture on Porosity and Permeability of Unconsolidated Sand[J]. AAPG Bulletin, 1973, 57(2): 349-369.
35 HUBBERT M K, RUBY W W. Mechanics of fluid-filled porous solid and its application to overthrust faulting: role of fluid pressure in mechanics of overthrust faulting[J]. Geological Society of America Bulletin, 1959, 70: 115-166.
文章导航

/