油气藏评价与开发 >
2025 , Vol. 15 >Issue 3: 443 - 454
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2025.03.011
天然裂缝发育特征及智能化识别方法——以四川盆地川西坳陷上三叠统须家河组为例
收稿日期: 2024-08-17
网络出版日期: 2025-05-28
基金资助
国家自然科学基金项目“非常规油气地质评价”(41922015);国家自然科学基金项目“电磁波辐射页岩油原位转化中的非热效应机理及其意义”(42072147);国家自然科学基金项目“湖相页岩纹层对有机-无机协同成储及页岩油富集的影响”(42472217)
Development characteristics and intelligent identification method of natural fractures: A case study of the Upper Triassic Xujiahe Formation in the western Sichuan Depression, Sichuan Basin
Received date: 2024-08-17
Online published: 2025-05-28
四川盆地川西坳陷上三叠统须家河组是四川盆地致密砂岩气(以下简称致密气)增储上产的重要领域。在实际生产中,高产稳产井与裂缝密集发育高度相关,裂缝为气体的运移和保存提供了路径和场所,裂缝发育与否成为制约优质储层形成的关键因素。为了评价须家河组气藏富集“甜点”区,依据岩心观察、测井资料及智能化算法,明确裂缝发育特征并建立有效的裂缝识别方法。研究认为:研究区的构造裂缝、成岩裂缝与异常高压裂缝均有发育。其中,构造裂缝主要分为3期,第1期NW—SE(北西—南东)向主要发育低角度裂缝,偶尔可见高角度裂缝;第2期NNE—SSW(北北东—南南西)向主要发育高角度裂缝;第3期E—W(东—西)向主要发育高角度裂缝。致密气储层裂缝层段具有低密度、高补偿中子、高声波时差、冲洗带电阻率和地层电阻率呈现正幅度差。对带有裂缝和非裂缝标签的常规测井数据进行归一化处理,应用机器学习算法进行裂缝智能化预测,K近邻算法、支持向量机、极端梯度提升树算法和随机森林算法的F1分数分别为0.65、0.83、0.88、0.91,发现随机森林算法具有较强的鲁棒性和抗干扰能力,预测精确度和效率均高于其他3种算法。同时,为了兼顾运算效率与准确性,选择基因遗传算法作为优化算法进行超参数调优,优于网格搜索、贝叶斯优化及粒子群优化算法。使用沙普利可加性特征解释方法(SHapley Additive Explanations, 简称SHAP)计算不同影响因素对预测的贡献值,发现声波时差、补偿中子和补偿密度为主要影响预测效果的测井曲线。裂缝密度呈现出明显的空间分布规律,即从四川盆地西南部至四川盆地西北部,裂缝密度依次降低。研究结果可为四川盆地西部地区致密气储层裂缝“甜点”区预测提供一套切实可行的智能化预测模型,为致密气增储上产奠定基础。
李伟 , 王民 , 肖佃师 , 金惠 , 邵好明 , 崔俊峰 , 贾益东 , 张泽元 , 李明 . 天然裂缝发育特征及智能化识别方法——以四川盆地川西坳陷上三叠统须家河组为例[J]. 油气藏评价与开发, 2025 , 15(3) : 443 -454 . DOI: 10.13809/j.cnki.cn32-1825/te.2025.03.011
The Upper Triassic Xujiahe Formation in the western Sichuan Depression, Sichuan Basin is an important area for the increase in reserves and production of tight sandstone gas (hereinafter referred to as “tight gas”) in the Sichuan Basin. In practical production, high-yield and stable production wells are highly correlated with the dense development of fractures. Fractures provide pathways and spaces for gas migration and storage, and whether fractures develop is a key factor restricting the formation of high-quality reservoirs. To evaluate the “sweet spot” enrichment area of the Xujiahe Formation gas reservoir, fracture development characteristics are identified and an effective fracture recognition method is established based on core observation, logging data, and intelligent algorithms. The research suggests that structural fractures, diagenetic fractures, and overpressure fractures all develop in the study area. The structural fractures are mainly divided into three phases: Phase 1 (NW-SE orientation) predominantly develops low-angle fractures, with occasional high-angle fractures; Phase 2 (NNE-SSW orientation) mainly develops high-angle fractures; Phase 3 (E-W orientation) predominantly develops high-angle fractures. The fracture segments in the tight gas reservoir display characteristics of low density, high neutron density, high sonic time difference, and positive amplitude differences in deep and shallow lateral resistivity. The conventional logging data with fracture and non-fracture labels were normalized, and machine learning algorithms were applied for fracture intelligent prediction. The F1 scores for the K-nearest neighbors (KNN), support vector machine (SVM), extreme gradient boosting (XGBoost), and random forest algorithms were 0.65, 0.83, 0.88, and 0.91, respectively. It was found that the random forest algorithm demonstrated strong robustness and anti-interference capabilities, with higher prediction accuracy and efficiency compared to the other three algorithms. Additionally, to balance computational efficiency and accuracy, the genetic algorithm was selected as the optimization algorithm for hyperparameter tuning, outperforming grid search, Bayesian optimization, and particle swarm optimization algorithms. Shapley Additive Explanations (SHAP) were used to calculate the contribution of different influencing factors to the predictions. It was found that the sonic time difference, neutron density, and compensated density were the main logging curves influencing prediction accuracy. The fracture density exhibited a clear spatial distribution pattern, decreasing from the southwestern part to the northwestern part of the Sichuan Basin. The research results can provide a practical and feasible intelligent prediction model for the fracture “sweet spot” zone in tight gas reservoirs in the western Sichuan Basin, laying the foundation for increasing reserves and production of tight gas.
1 | 贾爱林, 位云生, 郭智, 等. 中国致密砂岩气开发现状与前景展望[J]. 天然气工业, 2022, 42(1): 83-92. |
JIA Ailin, WEI Yunsheng, GUO Zhi, et al. Development status and prospect of tight sandstone gas in China[J]. Natural Gas Industry, 2022, 42(1): 83-92. | |
2 | 李鹭光. 中国天然气工业发展回顾与前景展望[J]. 天然气工业, 2021, 41(8): 1-11. |
LI Luguang. Development of natural gas industry in China: Review and prospect[J]. Natural Gas Industry, 2021, 41(8): 1-11. | |
3 | 祝彦贺, 赵志刚, 路媛媛, 等. 中国海油陆上致密砂岩气勘探研究进展及关键技术[J]. 中国海上油气, 2024, 36(6): 13-25. |
ZHU Yanhe, ZHAO Zhigang, LU Yuanyuan, et al. Research progress and key technologies for exploration of onshore tight sandstone gas by CNOOC[J]. China Offshore Oil and Gas, 2024, 36(6): 13-25. | |
4 | 张烈辉, 胡勇, 李小刚, 等. 四川盆地天然气开发历程与关键技术进展[J]. 天然气工业, 2021, 41(12): 60-72. |
ZHANG Liehui, HU Yong, LI Xiaogang, et al. History and key technological progress of natural gas development in the Sichuan Basin[J]. Natural Gas Industry, 2021, 41(12): 60-72. | |
5 | 张道伟, 杨雨. 四川盆地陆相致密砂岩气勘探潜力与发展方向[J]. 天然气工业, 2022, 42(1): 1-11. |
ZHANG Daowei, YANG Yu. Exploration potential and development direction of continental tight sandstone gas in the Sichuan Basin[J]. Natural Gas Industry, 2022, 42(1): 1-11. | |
6 | 王溯, 陈勉, 吕嘉昕. 水力压裂多裂缝扩展诱发光纤应变演化试验研究[J]. 石油机械, 2024, 52(8): 101-107. |
WANG Su, CHEN Mian, Jiaxin LYU. Experimental study on fiber strain evolution induced by multi-fracture propagation in hydraulic fracturing[J]. China Petroleum Machinery, 2024, 52(8): 101-107. | |
7 | 陈旋, 贾雪丽, 王波, 等. 吐哈盆地丘东洼陷深层致密砂岩油气富集主控因素[J]. 中国海上油气, 2024,36(6):26-38. |
CHEN Xuan, JIA Xueli, WANG Bo, et al. Main controlling factors for the enrichment of oil and gas in deep tight sandstone in the Qiudong Sub-sag of the Turpan-Hami Basin[J]. China Offshore Oil and Gas, 2024, 36(6): 26-38. | |
8 | 刘振峰, 刘忠群, 郭元岭, 等. “断缝体”概念、地质模式及其在裂缝预测中的应用: 以四川盆地川西坳陷新场地区须家河组二段致密砂岩气藏为例[J]. 石油与天然气地质, 2021, 42(4): 973-980. |
LIU Zhenfeng, LIU Zhongqun, GUO Yuanling, et al. Concept and geological model of fault-fracture reservoir and their application in seismic fracture prediction: A case study on the Xu 2 Member tight sandstone gas pool in Xinchang area, Western Sichuan Depression in Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(4): 973-980. | |
9 | 雷越, 黄嵌, 王旭丽, 等. 川西北地区须家河组二段致密砂岩储层特征及其主控因素[J]. 特种油气藏, 2023, 30(5): 50-57, 66. |
LEI Yue, HUANG Qian, WANG Xuli, et al. Reservoir characteristics and main controlling factors of tight sandstone in member 2 of the Xujiahe Formation in Northwest Sichuan[J]. Special Oil & Gas Reservoirs, 2023, 30(5): 50-57, 66. | |
10 | 梁霄. 川西坳陷北段复杂地质构造背景下深层海相油气成藏过程研究[D]. 成都: 成都理工大学, 2020. |
LIANG Xiao. The deep marine hydrocarbon accumulation process under complex tectonic background in the Northern Segment of Western Sichuan Depression[D]. Chengdu: Chengdu University of Technology, 2020. | |
11 | 印兴耀, 马正乾, 宗兆云, 等. 地震岩石物理驱动的裂缝预测技术研究现状与进展(Ⅱ): 五维地震裂缝预测技术[J]. 石油物探, 2022, 61(3): 373-391. |
YIN Xingyao, MA Zhengqian, ZONG Zhaoyun, et al. Review of fracture prediction driven by the seismic rock physics theory (Ⅱ): Fracture prediction from five-dimensional seismic data[J]. Geophysical Prospecting for Petroleum, 2022, 61(3): 373-391. | |
12 | 周康, 王强, 乔永亮. 龙门山造山带与川西前陆盆地的盆山耦合关系对油气成藏的控制作用[J]. 地球科学与环境学报, 2011, 33(4): 378-383. |
ZHOU Kang, WANG Qiang, QIAO Yongliang. Control of the basin-range coupling relationship between Longmen Mountain Orogenic Belt and Western Sichuan Foreland Basin to hydrocarbon accumulation[J]. Journal of Earth Sciences and Environment, 2011, 33(4): 378-383. | |
13 | 刘志远, 李浩, 武清钊, 等. 致密砂岩裂缝测井识别特色技术及其应用效果:以四川盆地川西坳陷新场气田上三叠统须家河组二段为例[J]. 石油与天然气地质, 2021, 42(4): 981-991. |
LIU Zhiyuan, LI Hao, WU Qingzhao, et al. Characteristics and application effect of logging-based fracture identification in tight sandstones: A case study of the Upper Triassic Xu 2 Member in Western Sichuan Depression, Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(4): 981-991. | |
14 | 陆国青, 董少群, 黄立良, 等. 准噶尔盆地玛湖凹陷风城组陆相页岩油储层测井裂缝智能识别[J]. 地球科学, 2023, 48(7): 2690-2702. |
LU Guoqing, DONG Shaoqun, HUANG Liliang, et al. Fracture intelligent identification using well logs of continental shale oil reservoir of Fengcheng Formation in Mahu Sag, Junggar Basin[J]. Earth Science, 2023, 48(7): 2690-2702. | |
15 | 李智武, 刘树根, 林杰, 等. 川西坳陷构造格局及其成因机制[J]. 成都理工大学学报(自然科学版), 2009, 36(6): 645-653. |
LI Zhiwu, LIU Shugen, LIN Jie, et al. Structural configuration and its genetic mechanism of the West Sichuan depression in China[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2009, 36(6): 645-653. | |
16 | 李双建, 李智, 张磊, 等. 四川盆地川西坳陷三叠系盐下超深层油气成藏条件与勘探方向[J]. 石油与天然气地质, 2023, 44(6): 1555-1567. |
LI Shuangjian, LI Zhi, ZHANG Lei, et al. Hydrocarbon accumulation conditions and exploration targets of the Triassic subsalt ultra-deep sequences in the western Sichuan Depression, Sichuan Basin[J]. Oil & Gas Geology, 2023, 44(6): 1555-1567. | |
17 | 曹正林, 张本健, 杨荣军, 等. 川西地区上三叠统须家河组全油气系统成藏模式新认识[J]. 天然气工业, 2023, 43(11): 40-53. |
CAO Zhenglin, ZHANG Benjian, YANG Rongjun, et al. New understanding of hydrocarbon accumulation model in whole petroleum system of the Upper Trassic Xujiahe Formation in the western Sichuan Basin[J]. Natural Gas Industry, 2023, 43(11): 40-53. | |
18 | 邱玉超, 许强, 李一博, 等. 四川盆地天府地区上三叠统须家河组四段致密储层砂体刻画及有利储层预测[J]. 特种油气藏, 2024, 31(3): 18-26. |
QIU Yuchao, XU Qiang, LI Yibo, et al. Characterization of tight sandstone reservoirs and prediction of favorable reservoirs in the Fourth Member of the Upper Triassic Xujiahe Formation in the Tianfu area of the Sichuan Basin[J]. Special Oil & Gas Reservoirs, 2024, 31(3): 18-26. | |
19 | 刘忠群, 徐士林, 刘君龙, 等. 四川盆地川西坳陷深层致密砂岩气藏富集规律[J]. 天然气工业, 2020, 40(2): 31-40. |
LIU Zhongqun, XU Shilin, LIU Junlong, et al. Enrichment laws of deep tight sandstone gas reservoirs in the western Sichuan Depression, Sichuan Basin[J]. Natural Gas Industry, 2020, 40(2): 31-40. | |
20 | 姜自然, 陆正元, 刘斐, 等. 川西拗陷新场气田须家河组宽大裂缝及其油气地质意义[J]. 成都理工大学学报(自然科学版), 2023, 50(1): 34-42. |
JIANG Ziran, LU Zhengyuan, LIU Fei, et al. Study of Xujiahe Formation macro-fractures in Xinchang Gas Field in western Sichuan Depression and their oil & gas geological significance[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2023, 50(1): 34-42. | |
21 | 李智武, 宋天慧, 王自剑, 等. 川西-龙门山盆山系统走向差异演化的变形、隆升和沉积记录及关键构造变革期讨论[J]. 成都理工大学学报(自然科学版), 2021, 48(3): 257-282. |
LI Zhiwu, SONG Tianhui, WANG Zijian, et al. Strike variation evolution of the basin-mountain system in western Sichuan Longmenshan as recorded by deformation, exhumation and deposition and discussion on the period of key structural transformation[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2021, 48(3): 257-282. | |
22 | 黄莉莎, 闫建平, 刘明洁, 等. 深层致密砂岩气储层成岩相测井识别及应用: 以川西坳陷大邑须家河组须三段为例[J]. 中国矿业大学学报, 2022, 51(1): 107-123. |
HUANG Lisha, YAN Jianping, LIU Mingjie, et al. Diagenetic facies logging identification and application of deep tight sandstone gas reservoir: A case study of the third member of Xujiahe formation in Dayi area of western Sichuan depression[J]. Journal of China University of Mining & Technology, 2022, 51(1): 107-123. | |
23 | 郑和荣, 刘忠群, 徐士林, 等. 四川盆地中国石化探区须家河组致密砂岩气勘探开发进展与攻关方向[J]. 石油与天然气地质, 2021, 42(4): 765-783. |
ZHENG Herong, LIU Zhongqun, XU Shilin, et al. Progress and key research directions of tight gas exploration and development in Xujiahe Formation, Sinopec exploration areas, Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(4): 765-783. | |
24 | 吕文雅, 苗凤彬, 张本键, 等. 四川盆地剑阁地区须家河组致密砾岩储层裂缝特征及对天然气产能的影响[J]. 石油与天然气地质, 2020, 41(3): 484-491. |
Wenya LYU, MIAO Fengbin, ZHANG Benjian, et al. Fracture characteristics and their influence on natural gas production: A case study of the tight conglomerate reservoir in the Upper Triassic Xujiahe Formation in Jian’ge area, Sichuan Basin[J]. Oil & Gas Geology, 2020, 41(3): 484-491. | |
25 | 叶泰然, 张虹, 唐建明. 深层裂缝性致密碎屑岩气藏高效储渗区识别: 以川西新场气田上三叠统须家河组气藏为例[J]. 天然气工业, 2009, 29(11): 22-26. |
YE Tairan, ZHANG Hong, TANG Jianming. Identification of high efficiency payzones with high permeability in deep fractured tight detrital reservoirs: A case study of gas reservoirs in the Upper Triassic Xujiahe Formation of Xinchang gas field in western Sichuan Basin[J]. Natural Gas Industry, 2009, 29(11): 22-26. | |
26 | 毛哲, 曾联波, 刘国平, 等. 准噶尔盆地南缘侏罗系深层致密砂岩储层裂缝及其有效性[J]. 石油与天然气地质, 2020, 41(6): 1212-1221. |
MAO Zhe, ZENG Lianbo, LIU Guoping, et al. Characterization and effectiveness of natural fractures in deep tight sandstones at the south margin of the Junggar Basin, northwestern China[J]. Oil & Gas Geology, 2020, 41(6): 1212-1221. | |
27 | 高志勇, 崔京钢, 樊小容, 等. 流体异常高压对深层储集层物理性质的作用机理:以准噶尔盆地南缘侏罗系头屯河组为例[J]. 石油勘探与开发, 2023, 50(6): 1221-1232. |
GAO Zhiyong, CUI Jinggang, FAN Xiaorong, et al. Action mechanisms of abnormal fluid pressure on physical properties of deep reservoirs: A case study on Jurassic Toutunhe Formation in the southern margin of Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2023, 50(6): 1221-1232. | |
28 | 杨秀春, 宋柏荣, 陈国辉, 等. 大宁-吉县区块深层煤岩多尺度孔缝结构特征[J]. 特种油气藏, 2022, 29(5): 94-100. |
YANG Xiuchun, SONG Bairong, CHEN Guohui, et al. Characteristics of multi-scale pore-fracture structure of deep coal rocks in the Daning-Jixian Block[J]. Special Oil & Gas Reservoirs, 2022, 29(5): 94-100. | |
29 | 钟高润, 张小莉, 杨振, 等. 鄂尔多斯盆地定边—志丹地区延长组致密砂岩储层裂缝测井识别[J]. 地球物理学进展, 2021, 36(4): 1669-1675. |
ZHONG Gaorun, ZHANG Xiaoli, YANG Zhen, et al. Logging identification method for fractures in tight sandstone reservoirs of Yanchang Formation in Dingbian-Zhidan area, Ordos Basin[J]. Progress in Geophysics, 2021, 36(4): 1669-1675. | |
30 | RIGATTI S J. Random forest[J]. Journal of Insurance Medicine, 2017, 47(1): 31-39. |
31 | BREIMAN L. Random forests[J]. Machine learning, 2001, 45: 5-32. |
32 | 栾丽华, 吉根林. 决策树分类技术研究[J]. 计算机工程, 2004(9): 94-96. |
LUAN Lihua, JI Genlin. The study on decision tree classification techniques[J]. Computer Engineering, 2004(9): 94-96. | |
33 | LUNDBERG S M, LEE S I. Proceedings of the 31st information conference on neural information proceeding systems[C]. California: Curran Associates, 2017: 4768-4777. |
34 | KIM Y, KIM Y. Explainable heat-related mortality with random forest and SHapley Additive exPlanations (SHAP) models[J]. Sustainable Cities and Society, 2022, 79: 103677. |
35 | BAIG N, ABBA S I, USMAN J, et al. Bio-inspired MXene membranes for enhanced separation and anti-fouling in oil-in-water emulsions: SHAP explainability ML[J]. Cleaner Water, 2024, 2: 100041. |
36 | ZHOU N, SHANG B, XU M, et al. Enhancing photovoltaic power prediction using a CNN-LSTM-attention hybrid model with Bayesian hyperparameter optimization[J]. Global Energy Interconnection, 2024, 7(5): 667-681. |
37 | ?AHIN C, TEMEL F A, YOLCU O C, et al. Simulation and optimization of cheese whey additive for value-added compost production: Hyperparameter tuning approach and genetic algorithm[J]. Journal of Environmental Management, 2024, 370: 122796. |
38 | CHANG X, LIU T, SHI B, et al. An improved algorithm with particle swarm optimization-extreme gradient boosting to predict the contents of pyrolytic hydrocarbons in source rocks[J]. Journal of Asian Earth Sciences, 2024, 276: 106367. |
/
〈 |
|
〉 |