油气藏评价与开发 >
2025 , Vol. 15 >Issue 3: 488 - 499
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2025.03.016
页岩气产能评价研究进展:内涵、方法和方向
收稿日期: 2023-11-10
网络出版日期: 2025-05-28
基金资助
国家自然科学基金项目“基于煤粉群运移动力学特征的煤层气-水-固耦合传质机理研究”(52104036);四川省自然科学基金项目“考虑纳米尺度效应与微纳跨尺度流动的煤层气临界解吸机制研究”(2023NSFSC0932)
Research progress on shale gas productivity evaluation: concepts, methods and future directions
Received date: 2023-11-10
Online published: 2025-05-28
页岩气的生产呈现早期高产而后快速递减的动态,快速递减表明初期配产可能过高,不合理配产导致气藏产能衰竭过快,从而影响气井的经济可采储量(EUR),因此,合理评价页岩气井产能对保障气藏稳产具有重要意义。为明确目前页岩气产能评价方法存在的问题和相应的解决思路,研究分析了页岩气产能的特殊内涵,综述了产能流动方程解析、流动方程数值模拟、人工智能3种方法在页岩气产能评价研究中的进展。研究发现页岩气产能明显呈现出分阶段特征,不同生产阶段产能主控因素、流动机制、流动状态都不同,早期产能和后期产能的主控因素差异较大,不同评价方法存在差异化认识。其中,流动方程解析法依赖于对流动机理的认识程度,流动方程数值模拟法结果的验证需要大量可靠数据支撑和气藏工程经验判断,人工智能方法则存在高度不透明、不可解释和泛化能力差的问题。基于此,未来发展应从深化微观和宏观2个层面结合点的页岩气渗流机理着手研究,深化地质建模—应力物性演化—裂缝扩展—多相流动数值模拟—递减分析多维度产能描述融合,并加强机器学习算法的无关机理约束、因果推断的透明度、可解释程度,以规避现有产能评价方法存在的制约性,从而构建合理的页岩气产能评价模型和方法,为准确评价气井产能、实现稳产和高效开发提供理论支撑。
朱苏阳 , 彭真 , 邸云婷 , 彭小龙 , 刘东晨 , 官文洁 . 页岩气产能评价研究进展:内涵、方法和方向[J]. 油气藏评价与开发, 2025 , 15(3) : 488 -499 . DOI: 10.13809/j.cnki.cn32-1825/te.2025.03.016
Shale gas production has exhibited high initial yields followed by a rapid decline. This rapid decline suggests that early-stage production rates were likely excessive, accelerating the depletion of reservoir productivity and adversely affecting the Estimated Ultimate Recovery (EUR) of shale gas wells. Therefore, accurate and reasonable productivity evaluation plays a key role in ensuring stable reservoir development. To identify the challenges of current shale gas productivity evaluation approaches and explore feasible solutions, this study analyzed the unique connotation of shale gas productivity and reviewed recent progress in three approaches: (1) Analytical solution methods of flow equations; (2) numerical simulation methods of flow equations; and (3) artificial intelligence (AI)-based methods. The results revealed that shale gas productivity was highly stage-dependent, with substantial variations in dominant controlling factors, flow mechanisms, and flow regimes across different production stages. Early and late production stages exhibit distinct controlling factors, leading to differentiated perspectives across the various evaluation methods. The analytical solution method relied heavily on a deep understanding of flow mechanisms. Numerical simulation methods require extensive, high-quality datasets and strong reservoir engineering expertise for validation. AI-based methods faced challenges such as high opacity, limited interpretability, and poor generalization. Based on these findings, future research should focus on integrating shale gas flow mechanisms at both micro and macro scales. Emphasis should be placed on the multidimensional integration of geological modeling, stress-petrophysical evolution, fracture propagation, multiphase flow numerical simulation, and decline analysis, enabling more comprehensive productivity characterization. In addition, further work is needed to incorporate mechanism-informed constraints into machine learning algorithms, enhance model transparency through causal inference, and improve interpretability. These advancements aim to avoid the limitations in existing productivity evolution methods and support the development of robust and rational shale gas productivity evaluation models and methods, providing theoretical guidance for accurate well productivity prediction, production stabilization, and efficient resource development.
1 | 王欣, 才博, 李帅, 等. 中国石油油气藏储层改造技术历程与展望[J]. 石油钻采工艺, 2023, 45(1): 67-75. |
WANG Xin, CAI Bo, LI Shuai, et al. Development process and prospect of CNPC’s reservoir stimulation technologies[J]. Oil Drilling & Production Technology, 2023, 45(1): 67-75. | |
2 | 罗红梅, 王长江, 张志敬, 等. 油气储层勘探建模技术新进展及未来展望[J]. 油气地质与采收率, 2024, 31(4): 135-153. |
LUO Hongmei, WANG Changjiang, ZHANG Zhijing, et al. New progress and future prospects of oil and gas reservoir modeling technology for exploration[J]. Petroleum Geology and Recovery Efficiency, 2024, 31(4): 135-153. | |
3 | 邹才能, 赵群, 丛连铸, 等. 中国页岩气开发进展、潜力及前景[J]. 天然气工业, 2021, 41(1): 1-14. |
ZOU Caineng, ZHAO Qun, CONG Lianzhu, et al. Development progress, potential and prospect of shale gas in China[J]. Natural Gas Industry, 2021, 41(1): 1-14. | |
4 | 邹才能, 赵群, 董大忠, 等. 页岩气基本特征、主要挑战与未来前景[J]. 天然气地球科学, 2017, 28(12): 1781-1796. |
ZOU Caineng, ZHAO Qun, DONG Dazhong, et al. Geological characteristics, main challenges and future prospect of shale gas[J]. Natural Gas Geoscience, 2017, 28(12): 1781-1796. | |
5 | 孙焕泉, 周德华, 蔡勋育, 等. 中国石化页岩气发展现状与趋势[J]. 中国石油勘探, 2020, 25(2): 14-26. |
SUN Huanquan, ZHOU Dehua, CAI Xunyu, et al. Progress and prospect of shale gas development of Sinopec[J]. China Petroleum Exploration, 2020, 25(2): 14-26. | |
6 | 赵文智, 贾爱林, 位云生, 等. 中国页岩气勘探开发进展及发展展望[J]. 中国石油勘探,2020,25(1): 31-44. |
ZHAO Wenzhi, JIA Ailin, WEI Yunsheng,et al. Progress in shale gas exploration in China and prospects for future development[J]. China Petroleum Exploration,2020,25(1): 31-44. | |
7 | 张培先, 高全芳, 何希鹏, 等. 南川地区龙马溪组页岩气地应力场特征及对产量影响分析[J]. 油气地质与采收率, 2023, 30(4): 55-65. |
ZHANG Peixian, GAO Quanfang, HE Xipeng, et al. Characteristics of in-situ stress field and its influence on shale gas production from Longmaxi Formation in Nanchuan area[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(4): 55-65. | |
8 | 刘秀伟, 王星, 程时清, 等. 耦合温度影响的动态非线性渗流模型[J]. 油气地质与采收率, 2024, 31(3): 178-185. |
LIU Xiuwei, WANG Xing, CHENG Shiqing, et al. A dynamic non-linear flow model coupling temperature influence[J]. Petroleum Geology and Recovery Efficiency, 2024, 31(3): 178-185. | |
9 | OZKAN E, BROWN M, RAGHAVAN R, et al. Comparison of fractured-horizontal-well performance in tight sand and shale reservoirs[J]. SPE Reservoir Evaluation & Engineering, 2011, 14(2): 248-259. |
10 | STALGOROVA E, MATTAR L. Analytical model for unconventional multifractured composite systems[J]. SPE Reservoir Evaluation & Engineering, 2013, 16(3): 246-256. |
11 | 王本成, 贾永禄, 李友全, 等. 多段压裂水平井试井模型求解新方法[J]. 石油学报, 2013, 34(6): 1150-1156. |
WANG Bencheng, JIA Yonglu, LI Youquan, et al. A new solution of well test model for multistage fractured horizontal wells[J]. Acta Petrolei Sinica, 2013, 34(6): 1150-1156. | |
12 | 王西凤, 黄世军, 赵凤兰, 等. 深层页岩气井气水两相产能预测[J]. 石油钻采工艺, 2023, 45(4): 463-470. |
WANG Xifeng, HUANG Shijun, ZHAO Fenglan, et al. Production forecast of deep shale gas wells based on gas-water two-phase flow[J]. Oil Drilling & Production Technology, 2023, 45(4): 463-470. | |
13 | 朱绍鹏, 欧进晶. 压敏性多重介质气藏压裂水平井渗流特征[J]. 石油钻采工艺, 2023, 45(6): 738-747. |
ZHU Shaopeng, Jinjing OU. Flow characteristics of fractured horizontal wells in pressure-sensitive multi-media gas reservoirs[J]. Oil Drilling & Production Technology, 2023, 45(6): 738-747. | |
14 | 陈元千. 气井拟压力弹性一相法的推导、简化及应用[J]. 油气地质与采收率, 2024, 31(6): 89-95. |
CHEN Yuanqian. Derivation, simplification and application of the pseudo-pressure elastic one-phase method for gas wells[J]. Petroleum Geology and Recovery Efficiency, 2024, 31(6): 89-95. | |
15 | 赵彦昕, 许文俊, 王雷, 等. 陆相页岩储层水力裂缝穿层扩展规律[J]. 石油钻采工艺, 2023, 45(1): 76-84. |
ZHAO Yanxin, XU Wenjun, WANG Lei, et al. Through-layer propagation laws of hydraulic fractures in continental shale reservoirs[J]. Oil Drilling & Production Technology, 2023, 45(1): 76-84. | |
16 | 寇园园, 陈军斌, 聂向荣, 等. 基于离散元方法的拉链式压裂效果影响因素分析[J]. 石油钻采工艺, 2023, 45(2): 211-222. |
KOU Yuanyuan, CHEN Junbin, NIE Xiangrong, et al. Analyzing the factors influencing zipper fracturing based on discrete element method[J]. Oil Drilling & Production Technology, 2023, 45(2): 211-222. | |
17 | 王强, 王玉丰, 梁升平, 等. 低渗储层关井后水力裂缝二次扩展规律[J]. 石油钻采工艺, 2023, 45(5): 597-606. |
WANG Qiang, WANG Yufeng, LIANG Shengping, et al. Secondary propagation of hydraulic fracture in low-permeability reservoir after shut-in[J]. Oil Drilling & Production Technology, 2023, 45(5): 597-606. | |
18 | TADJER A, HONG A J, BRATVOLD R B. Machine learning based decline curve analysis for short-term oil production forecast[J]. Energy Exploration & Exploitation, 2021, 39(5): 1747-1769. |
19 | 毕剑飞, 李靖, 吴克柳, 等. 数据驱动与物理驱动融合的双驱动渗流代理模型构建[J]. 油气地质与采收率, 2023, 30(3): 104-114. |
BI Jianfei, LI Jing, WU Keliu, et al. A data-driven flow surrogate model based on a data-driven and physics-driven method[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(3): 104-114. | |
20 | 李熙喆, 刘晓华, 苏云河, 等. 中国大型气田井均动态储量与初始无阻流量定量关系的建立与应用[J]. 石油勘探与开发, 2018, 45(6): 1020-1025. |
LI Xizhe, LIU Xiaohua, SU Yunhe, et al. Correlation between per-well average dynamic reserves and initial absolute open flow potential(AOFP) for large gas fields in China and its application[J]. Petroleum Exploration and Development, 2018, 45(6): 1020-1025. | |
21 | 陈元千, 王鑫. 气井变产量弹性二相法的应用[J]. 油气地质与采收率, 2023, 30(5): 63-66. |
CHEN Yuanqian, WANG Xin. Application of elastic two phase method with variable production in gas wells[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(5): 63-66. | |
22 | 李旭成, 李晓平, 强小军, 等. 页岩气产能分析理论及方法研究综述[J]. 天然气勘探与开发, 2014, 37(1): 51-55, 59. |
LI Xucheng, LI Xiaoping, JIANG Xiaojun, et al. Theory and method for shale-gas productivity analysis[J]. Natural Gas Exploration and Development, 2014, 37(1): 51-55, 59. | |
23 | 梁兴, 张介辉, 张涵冰, 等. 浅层页岩气勘探重大发现与高效开发对策研究: 以太阳浅层页岩气田为例[J]. 中国石油勘探, 2021, 26(6): 21-37. |
LIANG Xing, ZHANG Jiehui, ZHANG Hanbing, et al. Major discovery and high-efficiency development strategy of shallow shale gas: A case study of Taiyang shale gas field[J]. China Petroleum Exploration, 2021, 26(6): 21-37. | |
24 | 马文礼, 李治平, 高闯, 等. 页岩气井初期产能主控因素“Pearson-MIC”分析方法[J]. 中国科技论文, 2018, 13(15): 1765-1771. |
MA Wenli, LI Zhiping, GAO Chuang, et al. “Pearson-MIC” analysis method for the initial production key controlling factors of shale gas wells[J]. China Sciencepaper, 2018, 13(15): 1765-1771. | |
25 | 李文镖. 页岩气解析过程中的甲烷同位素分馏: 机理、表征及应用[D]. 东营: 中国石油大学(华东), 2022. |
LI Wenbiao. Methane isotopic fractionation in shale gas analysis: Mechanism, characterization and application[D]. Dongying: China University of Petroleum(East China), 2022. | |
26 | 谢亚雄, 刘启国, 王卫红, 等. 页岩气藏多段压裂水平井产能预测模型[J]. 大庆石油地质与开发, 2016, 35(5): 163-169. |
XIE Yaxiong, LIU Qiguo, WANG Weihong, et al. Productivity predicting model of the multiple-stage fractured horizontal wells in shale gas reservoirs[J]. Petroleum Geology & Oilfield Development in Daqing, 2016, 35(5): 163-169. | |
27 | LI J, NING Z F, WANG J H, et al. Experimental investigation on the effect of slickwater on methane adsorption/desorption/diffusion and pore structure of shale[J]. International Journal of Hydrogen Energy, 2024, 94: 871-882. |
28 | 卢婷, 王鸣川, 马文礼, 等. 考虑多重应力敏感效应的页岩气藏压裂水平井试井模型[J]. 新疆石油地质, 2021, 42(6): 741-748. |
LU Ting, WANG Mingchuan, MA Wenli, et al. Fractured horizontal well test model for shale gas reservoirs with considering multiple stress sensitive factors[J]. Xinjiang Petroleum Geology, 2021, 42(6): 741-748. | |
29 | 姜瑞忠, 张福蕾, 崔永正, 等. 考虑应力敏感和复杂运移的页岩气藏压力动态分析[J]. 岩性油气藏, 2019, 31(4): 149-156. |
JIANG Ruizhong, ZHANG Fulei, CUI Yongzheng, et al. Pressure dynamic analysis of shale gas reservoirs considering stress sensitivity and complex migration[J]. Lithologic Reservoirs, 2019, 31(4): 149-156. | |
30 | 田冷, 肖聪, 顾岱鸿. 考虑应力敏感与非达西效应的页岩气产能模型[J]. 天然气工业, 2014, 34(12): 70-75. |
TIAN Leng, XIAO Cong, GU Daihong. A shale gas reservoir productivity model considering stress sensitivity and non-Darcy flow[J]. Natural Gas Industry, 2014, 34(12): 70-75. | |
31 | 邹才能, 丁云宏, 卢拥军, 等. “人工油气藏”理论、技术及实践[J]. 石油勘探与开发, 2017, 44(1): 144-154. |
ZOU Caineng, DING Yunhong, LU Yongjun, et al. Concept, technology and practice of“man-made reservoirs”development[J]. Petroleum Exploration and Development, 2017, 44(1): 144-154. | |
32 | 金之钧, 胡宗全, 高波, 等. 川东南地区五峰组-龙马溪组页岩气富集与高产控制因素[J]. 地学前缘, 2016, 23(1): 1-10. |
JIN Zhijun, HU Zongquan, GAO Bo, et al. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi Formations, southeastern Sichuan Basin[J]. Earth Science Frontiers, 2016, 23(1): 1-10. | |
33 | 郭旭升, 腾格尔, 魏祥峰, 等. 四川盆地深层海相页岩气赋存机理与勘探潜力[J]. 石油学报, 2022, 43(4): 453-468. |
GUO Xusheng, BORJIGIN Tenger, WEI Xiangfeng, et al. Occurrence mechanism and exploration potential of deep marine shale gas in Sichuan Basin[J]. Acta Petrolei Sinica, 2022, 43(4): 453-468. | |
34 | 李根生, 盛茂, 田守嶒, 等. 页岩气储层水平井与压裂工程基础问题探讨[J]. 科学通报, 2016, 61(26): 2883-2890. |
LI Gensheng, SHENG Mao, TIAN Shouceng, et al. Key issues and investigation of horizontal well drilling and multistage fracturing in shale gas reservoir[J]. Chinese Science Bulletin, 2016, 61(26): 2883-2890. | |
35 | 孙焕泉, 蔡勋育, 胡德高, 等. 页岩气立体开发理论技术与实践: 以四川盆地涪陵页岩气田为例[J]. 石油勘探与开发, 2023, 50(3): 573-584. |
SUN Huanquan, CAI Xunyu, HU Degao, et al. Theory, technology and practice of shale gas three-dimensional development: A case study of Fuling shale gas field in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2023, 50(3): 573-584. | |
36 | MALE F, MARDER M P, BROWNING J, et al. Marcellus wells’Ultimate production accurately predicted from Initial production[C]// Paper SPE-180234-MS presented at the SPE Low Perm Symposium, Denver, Colorado, USA, May 2016. |
37 | NIE H, LIU Q, DANG W, et al. Enrichment mechanism and resource potential of shale-type helium: A case study of Wufeng Formation-Longmaxi Formation in Sichuan Basin[J]. Scientia Sinica(Terrae), 2023, 66(6): 1279-1288. |
38 | MICHEAL M, XU W L, XU H Y, et al. Multi-scale modelling of gas transport and production evaluation in shale reservoir considering crisscrossing fractures[J]. Journal of Natural Gas Science and Engineering, 2021, 95: 104156. |
39 | TANG C, CHEN X F, DU Z M, et al. Numerical simulation study on seepage theory of a multi-section fractured horizontal well in shale gas reservoirs based on multi-scale flow mechanisms[J]. Energies, 2018, 11(9): 2329. |
40 | JAVADPOUR F. Nanopores and apparent permeability of gas flow in mudrocks(Shales and Siltstone)[J]. Journal of Canadian Petroleum Technology, 2009, 48(8): 16-21. |
41 | 高树生, 于兴河, 刘华勋. 滑脱效应对页岩气井产能影响的分析[J]. 天然气工业, 2011, 31(4): 55-58. |
GAO Shusheng, YU Xinghe, LIU Huaxun. Impact of slippage effect on shale gas well productivity[J]. Natural Gas Industry, 2011, 31(4): 55-58. | |
42 | 谢维扬, 李晓平. 水力压裂缝导流的页岩气藏水平井稳产能力研究[J]. 天然气地球科学, 2012, 23(2): 387-392. |
XIE Weiyang, LI Xiaoping. Steady productivity of horizontal well in hydraulic fracture induced shale gas reservoir[J]. Natural Gas Geoscience, 2012, 23(2): 387-392. | |
43 | SHI J T, ZHANG L, LI Y S, et al. Diffusion and flow mechanisms of shale gas through matrix pores and gas production forecasting[C]// Paper SPE-167226-MS presented at the SPE Unconventional Resources Conference Canada, Calgary, Alberta, Canada, November 2013. |
44 | ZHAO Y L, ZHANG L H, ZHAO J Z, et al. “Triple porosity” modeling of transient well test and rate decline analysis for multi-fractured horizontal well in shale gas reservoirs[J]. Journal of Petroleum Science and Engineering, 2013, 110: 253-262. |
45 | 张磊, 徐兵祥, 辛翠平, 等. 考虑主裂缝的页岩气产能预测模型[J]. 天然气地球科学, 2019, 30(2): 247-256. |
ZHANG Lei, XU Bingxiang, XIN Cuiping, et al. Production forecasting model of shale gas considering the main fractures[J]. Natural Gas Geoscience, 2019, 30(2): 247-256. | |
46 | 郭小哲, 王晶, 刘学锋. 页岩气储层压裂水平井气-水两相渗流模型[J]. 石油学报, 2016, 37(9): 1165-1170. |
GUO Xiaozhe, WANG Jing, LIU Xuefeng. Gas-water two phase porous flow model of fractured horizontal well in shale gas reservoir[J]. Acta Petrolei Sinica, 2016, 37(9): 1165-1170. | |
47 | 朱维耀, 马东旭, 亓倩, 等. 复杂缝网页岩压裂水平井多区耦合产能分析[J]. 天然气工业, 2017, 37(7): 60-68. |
ZHU Weiyao, MA Dongxu, QI Qian, et al. Multi-zone coupling productivity of horizontal well fracturing with complex fracture networks in shale gas reservoirs[J]. Natural Gas Industry, 2017, 37(7): 60-68. | |
48 | 陈小凡, 唐潮, 杜志敏, 等. 基于有限体积方法的页岩气多段压裂水平井数值模拟[J]. 天然气工业, 2018, 38(12): 77-86. |
CHEN Xiaofan, TANG Chao, DU Zhimin, et al. Numerical simulation on multi-stage fractured horizontal wells in shale gas reservoirs based on the finite volume method[J]. Natural Gas Industry, 2018, 38(12): 77-86. | |
49 | 赵玉龙, 黄鑫, 张烈辉, 等. 基于嵌入式离散裂缝模型优化的海陆过渡相页岩气压裂水平井数值模拟[J]. 天然气工业, 2023, 43(4): 116-126. |
ZHAO Yulong, HUANG Xin, ZHANG Liehui, et al. Numerical simulation of fractured horizontal wells in transitional shale gas reservoirs based on embedded discrete fracture model optimization[J]. Natural Gas Industry, 2023, 43(4): 116-126. | |
50 | 胡之牮, 李树新, 王建君, 等. 复杂人工裂缝产状页岩气藏多段压裂水平井产能评价[J]. 油气藏评价与开发, 2023, 13(4): 459-466. |
HU Zhijian, LI Shuxin, WANG Jianjun, et al. Productivity evaluation of multi-stage fracturing horizontal wells in shale gas reservoir with complex artificial fracture occurrence[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 459-466. | |
51 | 唐慧莹, 罗山贵, 梁海鹏, 等. 考虑气水两相流动的页岩气井压裂-生产一体化数值模拟[J]. 石油勘探与开发, 2024, 51(3): 597-607. |
TANG Huiying, LUO Shangui, LIANG Haipeng, et al. Integrated numerical simulation of hydraulic fracturing and production in shale gas well considering gas-water two-phase flow[J]. Petroleum Exploration and Development, 2024, 51(3): 597-607. | |
52 | LI Y, HAN Y. Decline Curve Analysis for Production Forecasting Based on Machine Learning[C]// Paper SPE-189205-MS presented at the SPE Symposium: Production Enhancement and Cost Optimisation, Kuala Lumpur, Malaysia, November 2017. |
53 | CHEN P, RAHMAN M M. A Novel Approach To Predict Interaction Between Hydraulic Fracture and Natural Fracture Using Artificial Neural Networks[C]// Paper SPE-176143-MS presented at the SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition, Nusa Dua, Bali, Indonesia, October 2015. |
54 | BAKAY A, CAERS J, MUKERJI T, et al. Integrating Geostatistical Modeling with Machine Learning for Production Forecast in Shale Reservoirs: Case Study from Eagle Ford[C]// Paper URTEC-2019-141-MS presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference, Denver, Colorado, USA, July 2019. |
55 | 胡晓东, 涂志勇, 罗英浩, 等. 拟合函数—神经网络协同的页岩气井产能预测模型[J]. 石油科学通报, 2022, 7(3): 394-405. |
HU Xiaodong, TU Zhiyong, LUO Yinghao, et al. Shale gas well productivity prediction model with fitted function-neural network cooperation[J]. Petroleum Science Bulletin, 2022, 7(3): 394-405. | |
56 | RASTOGI A, AGARWAL K, LOLON E, et al. Demystifying data-driven neural networks for multivariate producting analysis[C]// Paper URTEC-2019-247-MS presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference, Denver, Colorado, USA, July 2019. |
57 | 房大志, 刘洪, 庞进, 等. 考虑吸附气影响的页岩气井三项式产能计算方法[J]. 特种油气藏, 2023, 30(3): 137-142. |
FANG Dazhi, LIU Hong, PANG Jin, et al. A trinomial deliverability calculation method for shale gas wells considering the effect of adsorbed gas[J]. Special Oil & Gas Reservoirs, 2023, 30(3): 137-142. | |
58 | GDANSKI R D, FULTON D D, SHEN C. Fracture-face-skin evolution during cleanup[J]. SPE Production & Operations, 2009, 24(1): 22-34. |
59 | 胡小虎. 页岩气非均匀压裂水平井非稳态产能评价方法[J]. 断块油气田, 2021, 28(4): 519-524. |
HU Xiaohu. Transient productivity evaluation method for shale gas uneven-fractured horizontal well[J]. Fault-Block Oil & Gas Field, 2021, 28(4): 519-524. | |
60 | SHIN H, LIM J. Data-Driven Production Forecasting for Shale Gas Wells Using Production Characteristics Analysis[C]// Paper SPE-215292-MS presented at the SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition, Jakarta, Indonesia, October 2023. |
/
〈 |
|
〉 |