Petroleum Reservoir Evaluation and Development ›› 2023, Vol. 13 ›› Issue (3): 288-295.doi: 10.13809/j.cnki.cn32-1825/te.2023.03.003
• Methodological Theory • Previous Articles Next Articles
LI Ying1(),MA Hansong1,LI Haitao1,GANZER Leonhard2,TANG Zheng1,LI Ke2,LUO Hongwei1
Received:
2022-07-26
Online:
2023-06-26
Published:
2023-06-26
CLC Number:
LI Ying, MA Hansong, LI Haitao, GANZER Leonhard, TANG Zheng, LI Ke, LUO Hongwei. Dissolution of supercritical CO2 on carbonate reservoirs[J].Petroleum Reservoir Evaluation and Development, 2023, 13(3): 288-295.
Table 1
Porosity and permeability data(average) of carbonate samples before and after reaction brine and supercritical CO2"
岩样系列号 | 岩样干重/g | 饱和岩样重量/g | 孔隙度/% | 渗透率/10-3 μm2 | 孔隙度变化率/% | 渗透率变化率/% | |
---|---|---|---|---|---|---|---|
1 | 盐水浸没前 | 45.339 | 45.755 | 2.57 | 0.261 6 | -2.33 | -7.60 |
盐水浸没后 | 45.325 | 45.731 | 2.51 | 0.241 7 | |||
2 | 盐水浸没前 | 44.987 | 45.273 | 1.64 | 0.012 4 | -13.41 | -0.41 |
盐水浸没后 | 44.913 | 45.161 | 1.42 | 0.008 3 | |||
3 | CO2浸没前 | 47.214 | 47.485 | 1.54 | 0.010 3 | 20.78 | 2.24 |
CO2浸没后 | 46.658 | 46.985 | 1.86 | 0.032 7 | |||
4 | CO2浸没前 | 45.219 | 45.510 | 1.65 | 0.011 8 | 27.27 | 2.57 |
CO2浸没后 | 44.522 | 44.892 | 2.10 | 0.037 5 | |||
5 | CO2浸没前 | 46.516 | 46.874 | 2.04 | 0.014 0 | 32.35 | 1 001.42 |
CO2浸没后 | 46.489 | 46.992 | 2.70 | 0.154 2 |
Table 2
Mineral composition of carbonate samples before and after reaction with brine and supercritical CO2 %"
岩样系列号 | 矿物含量 | 矿物比 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
黏土总量 | 石英 | 钾长石 | 斜长石 | 方解石 | 白云石 | 黄铁矿 | 方解石/白云石 | 石英/长石 | 石英/黏土 | |||||
1 | 盐水浸没前 | 5.2 | 34.8 | 0 | 0 | 56.2 | 3.8 | 0 | ||||||
盐水浸没后 | 3.9 | 35.2 | 0 | 0 | 56.9 | 4.0 | 0 | |||||||
2 | 盐水浸没前 | 3.8 | 31.5 | 5.5 | 0.8 | 54.3 | 4.1 | 0 | ||||||
盐水浸没后 | 2.7 | 31.8 | 5.7 | 0.9 | 54.6 | 4.3 | 0 | |||||||
平均变化量 | -1.2 | 0.4 | 0.1 | 0.1 | 0.5 | 0.2 | 0 | |||||||
3 | CO2浸没前 | 12.1 | 29.6 | 2.4 | 5.7 | 42.8 | 5.0 | 2.4 | 8.6 | 3.7 | 2.4 | |||
CO2浸没后 | 16.8 | 40.7 | 4.2 | 6.5 | 18.5 | 6.5 | 6.8 | 2.8 | 3.8 | 2.5 | ||||
4 | CO2浸没前 | 9.7 | 38.1 | 3.2 | 4.4 | 36.9 | 4.8 | 2.9 | 7.7 | 5.0 | 3.9 | |||
CO2浸没后 | 10.9 | 52.2 | 4.1 | 5.5 | 16.7 | 5.6 | 5.0 | 3.0 | 5.3 | 4.3 | ||||
5 | CO2浸没前 | 7.4 | 37.1 | 4.5 | 2.1 | 42.2 | 4.2 | 2.5 | 10.0 | 5.6 | 5.0 | |||
CO2浸没后 | 9.5 | 49.7 | 5.5 | 3.4 | 19.7 | 5.3 | 6.9 | 3.7 | 5.7 | 5.2 |
Table 4
Wetting contact angle of carbonate samples before and after reaction brine and supercritical CO2 (°)"
岩样系列号 | 加权法测定 | 接触角法测定 | ||||
---|---|---|---|---|---|---|
接触角 | 变化量 | 接触角 | 变化量 | |||
1 | 盐水浸没前 | 30.95 | -1.23 | 29.01 | -2.31 | |
盐水浸没后 | 29.72 | 26.70 | ||||
2 | 盐水浸没前 | 31.83 | -1.05 | 32.25 | -3.40 | |
盐水浸没后 | 30.78 | 28.85 | ||||
3 | CO2浸没前 | 29.49 | -7.54 | 30.18 | -11.38 | |
CO2浸没后 | 21.95 | 18.80 | ||||
4 | CO2浸没前 | 27.57 | -8.04 | 29.15 | -12.57 | |
CO2浸没后 | 19.53 | 16.58 | ||||
5 | CO2浸没前 | 29.15 | -7.73 | 30.50 | -13.60 | |
CO2浸没后 | 21.42 | 16.90 |
[1] | 孙腾民, 刘世奇, 汪涛. 中国二氧化碳地质封存潜力评价研究进展[J]. 煤炭科学技术, 2021, 49(11): 10-20. |
SUN Tengmin, LIU Shiqi, WANG Tao. Research progress on the evaluation of carbon dioxide geological storage potential in China[J]. Coal Science and Technology, 2021, 49(11): 10-20. | |
[2] | 王敬霞, 雷磊, 于青春. 我国碳酸盐岩储层CO2地质储存潜力与适宜性[J]. 中国岩溶, 2015, 34(2): 101-108. |
WANG Jingxia, LEI Lei, YU Qingchun. Geological storage potential and suitability of CO2 in carbonate reservoirs in China[J]. China Karst, 2015, 34(2): 101-108. | |
[3] |
WANG J, ZHAO Y, AN Z Z, et al. CO2 storage in carbonate rocks: An experimental and geochemical modeling study[J]. Journal of Geochemical Exploration, 2022, 234: 106942.
doi: 10.1016/j.gexplo.2021.106942 |
[4] | 唐凡, 朱永刚, 张彦明, 等. CO2注入对储层多孔介质及赋存流体性质影响实验研究[J]. 石油与天然气化工, 2021, 50(01): 72-76. |
TANG Fan, ZHU Yonggang, ZHANG Yanming, et al. Experimental study on the effect of CO2 injection on the properties of porous media and host fluids in reservoirs[J]. Petroleum and Natural Gas Chemical, 2021, 50(1): 72-76. | |
[5] | 杨俊杰, 黄思静, 张文正, 等. 表生和埋藏成岩作用的温压条件下不同组成碳酸盐岩溶蚀成岩过程的实验模拟[J]. 沉积学报, 1995, 13(4): 49-54. |
YANG Junjie, HUANG Sijing, ZHANG Wenzheng, et al. Experimental simulation of the dissolution and diagenesis process of carbonate rocks of different compositions under the temperature and pressure conditions of epigenetic and burial diagenesis[J]. Acta Sedimentologica Sinica, 1995, 13(4): 49-54. | |
[6] | 范明. 不同温度条件下CO2水溶液对碳酸盐岩的溶蚀作用[J]. 沉积学报, 2007, 25(6): 825-830. |
FAN Ming. Dissolution of carbonate rocks by CO2 aqueous solution at different temperatures[J]. Chinese Journal of Sedimentology, 2007, 25(6): 825-830. | |
[7] | 高建文. 酸性溶液对碳酸盐岩溶蚀实验[J]. 辽宁化工, 2016 45(3): 254-256. |
GAO Jianwen. Experiment on the dissolution of carbonate rock by acidic solution[J]. Liaoning Chemical Industry, 2016, 45(3): 254-256. | |
[8] | 李骞, 张钰祥, 李滔, 等. 基于数字岩心建立的评价碳酸盐岩完整孔喉结构的方法——以川西北栖霞组为例[J]. 油气地质与采收率, 2021, 28(3): 53-61. |
LI Qian, ZHANG Yuxiang, LI Tao, et al. A method for evaluating complete pore-throat structure of carbonate rocks based on digital cores: A case study of Qixia Formation in Northwest Sichuan[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(3): 53-61. | |
[9] | 刘大伟, 康毅力, 何健, 等. 碳酸盐岩储层水敏性实验评价及机理探讨[J]. 天然气工业, 2007, 27(2): 32-35. |
LIU Dawei, KANG Yili, HE Jian, et al. Experimental evaluation and mechanism evaluation of water sensitivity in carbonate reservoirs[J]. Natural Gas Industry, 2007, 27(2): 32-35. | |
[10] | 李天太, 王清华, 张喜凤, 等. 塔中奥陶系碳酸盐岩储层敏感性实验研究[J]. 特种油气藏, 2005, 12(4): 79-82. |
LI Tiantai, WANG Qinghua, ZHANG Xifeng, et al. Experimental study on the sensitivity of Ordovician carbonate reservoirs in Tazhong[J]. Special Oil and Gas Reservoirs, 2005, 12(4): 79-82. | |
[11] | 郭冀隆. 二氧化碳地质封存过程中CO2—水—岩相互作用实验研究[D]. 北京: 中国地质大学(北京), 2017. |
GUO Jilong. Experimental study on CO2-water-rock interaction in the geological storage process of carbon dioxide[D]. Beijing: China University of Geosciences(Beijing), 2017. | |
[12] |
SUN Y P, WEI L N, DAI C L, et al. The carbonic acid-rock reaction in feldspar/dolomite-rich tightsand and its impact on CO2-water relative permeability during geological carbon storage[J]. Chemical Geology, 2021, 584: 120527.
doi: 10.1016/j.chemgeo.2021.120527 |
[13] | 李新勇, 吴恒川, 房好青, 等. 微观结构差异对碳酸盐岩酸蚀损伤的影响[J]. 新疆石油地质, 2021, 42(2): 188-193. |
LI Xinyong, WU Hengchuan, FANG Haoqing, et al. Effects of microstructural differences on acid erosion damage of carbonate rocks[J]. Xinjiang Petroleum Geology, 2021, 42(2): 188-193. | |
[14] | 兰天庆, 马媛媛, 贡同, 等. 超临界状态CO2封存技术研究进展[J]. 应用化工, 2019, 48(6): 1451-1455. |
LAN Tianqing, MA Yuanyuan, GONG Tong, et al. Research progress on supercritical CO2 storage technology[J]. Applied Chemical Industry, 2019, 48(6): 1451-1455. | |
[15] |
IGLESIAS R S, KETZER J M, MARASCHIN A J, et al. Characterization and modeling of CO2-water-rock interactions in Hygiene Sandstones(Upper Cretaceous), Denver Basin, aimed for carbon dioxide geological storage[J]. Greenhouse Gases: Science and Technology, 2018, 8(4): 781-795.
doi: 10.1002/ghg.2018.8.issue-4 |
[16] |
JIA B, CHEN Z L, XIAN C G. Investigations of CO2 storage capacity and flow behavior in shale formation[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109659.
doi: 10.1016/j.petrol.2021.109659 |
[17] | 李会元. 废弃油气藏CO2埋存过程中盖层完整性的评价[D]. 大庆: 东北石油大学, 2015. |
LI Huiyuan. Evaluation of caprock integrity during CO2 burial of abandoned oil and gas reservoirs[D]. Daqing: Northeast Petroleum University, 2015. | |
[18] |
IZGEC O, DEMIRAL B, BERTIN H, et al. CO2 injection into saline carbonate aquifer formations Ⅰ: Laboratory investigation[J]. Transport in Porous Media, 2008, 72(1): 1-24.
doi: 10.1007/s11242-007-9132-5 |
[19] | 张星, 毕义泉, 汪庐山, 等. 黏土矿物膨胀机理及防膨研究现状[J]. 精细石油化工进展, 2014, 15(5): 39-43. |
ZHANG Xing, BI Yiquan, WANG Lushan, et al. Research status of clay mineral expansion mechanism and expansion prevention[J]. Advances in Fine Petrochemical Industry, 2014, 15(5): 39-43. | |
[20] | 李四海, 马新仿, 张士诚, 等. CO2-水-岩作用对致密砂岩性质与裂缝扩展的影响[J]. 新疆石油地质, 2019, 40(3): 312-318. |
LI Sihai, MA Xinfang, ZHANG Shicheng, et al. Effects of CO2-water-rock action on properties and fracture propagation of tight sandstone[J]. Xinjiang Petroleum Geology, 2019, 40(3): 312-318. | |
[21] | 吴春正, 薛海涛, 卢双舫, 等. 几种常见矿物的油-水-矿物接触角测量及其讨论[J]. 现代地质, 2018, 32(4): 842-849. |
WU Chunzheng, XUE Haitao, LU Shuangfang, et al. Oil-water-mineral contact angle measurement and discussion of several common minerals[J]. Modern Geology, 2018, 32(4): 842-849. | |
[22] | 崔强, 程永锋, 鲁先龙, 等. 强风化岩中挖孔基础抗拔试验及荷载位移曲线模型参数研究[J]. 岩土力学, 2018, 39(12): 4597-4604. |
CUI Qiang, CHENG Yongfeng, LU Xianlong, et al. Uplift test of excavated foundation in strongly weathered rock and study on load displacement curve model parameters[J]. Rock and Soil Mechanics, 2018, 39(12): 4597-4604. |
[1] | ZHANG Wen,LIANG Lixi,LIU Xiangjun,XIONG Jian,ZHANG Yinan. Etching morphology and mechanical properties of carbonate rocks under acid action [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(2): 247-255. |
[2] | TANG Yong, TANG Kai, XIA Guang, XU Di. Retrograde condensation pollution and removal method of BZ19-6 low permeability reservoir [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 102-107. |
[3] | GUO Zhidong, KANG Yili, WANG Yubin, GU Linjiao, YOU Lijun, CHEN Mingjun, YAN Maoling. Gas-water relative permeability characteristics and production dynamic response of low pressure and high water cut tight gas reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 138-150. |
[4] | LI Jianshan, GAO Hao, YAN Changhao, WANG Shitou, WANG Liangliang. Molecular dynamics simulation on interaction mechanisms of crude oil and CO2 [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 26-34. |
[5] | DONG Lifei, DONG Wenzhuo, ZHANG Qi, ZHONG Pinzhi, WANG Miao, YU Bo, WEI Haiyu, YANG Chao. Optimal prediction method for CO2 solubility in saline aquifers [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 35-41. |
[6] | ZHANG Zhichao,BAI Mingxing,DU Siyu. Characteristics of pore dynamics in shale reservoirs by CO2 flooding [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 42-47. |
[7] | SUN Yili. Mechanism of CO2 injection to improve the water injection capacity of low permeability reservoir in Shuanghe Oilfield in Henan [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 55-63. |
[8] | LIANG Yunpei, ZHANG Huaijun, WANG Lichun, QIN Chaozhong, TIAN Jian, CHEN Qiang, SHI Bowen. Numerical simulation of flow fields and permeability evolution in real fractures under continuous loading stress [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(6): 834-843. |
[9] | CHEN Minfeng,QIN Lifeng,ZHAO Kang,WANG Yiwen. Effective injection-production well spacing in pressure-sensitive reservoir with low permeability [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(6): 855-862. |
[10] | ZHANG Fengxi, NIU Congcong, ZHANG Yichi. Evaluation of multi-stage fracturing a horizontal well of low permeability reservoirs in East China Sea [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 695-702. |
[11] | HU Zhijian, LI Shuxin, WANG Jianjun, ZHOU Hong, ZHAO Yulong, ZHANG Liehui. Productivity evaluation of multi-stage fracturing horizontal wells in shale gas reservoir with complex artificial fracture occurrence [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 459-466. |
[12] | WANG Dianlin, YANG Qiong, WEI Bing, JI Bingxin, XIN Jun, SUN Lin. Effect of betaine surfactant structure on the properties of CO2 foam film [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 313-321. |
[13] | SHEN Xin,GUO Jianchun,WANG Shibin. Acidification retardation caused by shielding of cationic surfactants [J]. Reservoir Evaluation and Development, 2023, 13(1): 117-126. |
[14] | LIAO Songlin,XIA Yang,CUI Yinan,LIU Fangzhi,CAO Shengjiang,TANG Yong. Variation of crude oil properties with multi-cycle CO2 huff-n-puff of horizontal wells in ultra-low permeability reservoir [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(5): 784-793. |
[15] | GUO Deming,PAN Yi,SUN Yang,CHAO Zhongtang,LI Xiaonan,CHENG Shisheng. EOR mechanism of viscosity reducer-CO2 combined flooding in heavy oil reservoir with low permeability [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(5): 794-802. |