[1] 何希鹏, 张培先, 高玉巧, 等. 中国非常规油气资源效益开发面临的挑战与对策[J]. 中国石油勘探, 2025, 30(1): 28-43. HE Xipeng, ZHANG Peixian, GAO Yuqiao, et al.Challenges and countermeasures for beneficial development of unconventional oil and gas resources in China[J]. China Petroleum Exploration, 2025, 30(1): 28-43. [2] 马永生, 蔡勋育, 赵培荣, 等. 中国陆相页岩油地质特征与勘探实践[J]. 地质学报, 2022, 96(1): 155-171. MA Yongsheng, CAI Xunyu, ZHAO Peirong, et al.Geological characteristics and exploration practices of continental shale oil in China[J]. Acta Geologica Sinica, 2022, 96(1): 155-171. [3] 石林, 张鲲鹏, 慕立俊. 页岩油储层压裂改造技术问题的讨论[J]. 石油科学通报, 2020, 5(4): 496-511. SHI Lin, ZHANG Kunpeng, MU Lijun.Discussion of hydraulic fracturing technical issues in shale oil reservoirs[J]. Petroleum Science Bulletin, 2020, 5(4): 496-511. [4] 李紫妍, 陈军斌, 左海龙, 等. 页岩储层水力裂缝和天然裂缝交互规律[J]. 断块油气田, 2024, 31(2): 232-240. LI Ziyan, CHEN Junbin, ZUO Hailong, et al.Interaction laws of hydraulic fractures and natural fractures in shale reservoirs[J]. Fault-Block Oil & Gas Field, 2024, 31(2): 232-240. [5] 侯冰, 常智, 武安安, 等. 吉木萨尔凹陷页岩油密切割压裂多簇裂缝竞争扩展模拟[J]. 石油学报, 2022, 43(1): 75-90. HOU Bing, CHANG Zhi, WU An’an, et al.Simulation of competitive propagation of multi-fractures on shale oil reservoir multi-clustered fracturing in Jimsar sag[J]. Acta Petrolei Sinica, 2022, 43(1): 75-90. [6] 李国欣, 罗凯, 石德勤. 页岩油气成功开发的关键技术、先进理念与重要启示: 以加拿大都沃内项目为例[J]. 石油勘探与开发, 2020, 47(4): 739-749. LI Guoxin, LUO Kai, SHI Deqin.Key technologies, engineering management and important suggestions of shale oil/gas development: Case study of a Duvernay shale project in Western Canada Sedimentary Basin[J]. Petroleum Exploration and Development, 2020, 47(4): 739-749. [7] 刘羽汐, 白斌, 曹健志, 等. 海陆相页岩型页岩油地质特征的差异与甜点评价: 以北美二叠盆地Wolfcamp D页岩油与松辽盆地古龙页岩油为例[J]. 中国石油勘探, 2023, 28(4): 55-65. LIU Yuxi, BAI Bin, CAO Jianzhi, et al.Differences in geological characteristics and sweet spots evaluation of marine and continental shale oil: A comparative case study between Wolfcamp D shale oil in Permian Basin in North America and Gulong shale oil in Songliao Bsain[J]. China Petroleum Exploration, 2023, 28(4): 55-65. [8] 汪海阁, 乔磊, 杨雄, 等. 中石油页岩油气工程技术现状及发展建议[J]. 石油学报, 2024, 45(10): 1552-1564. WANG Haige, QIAO Lei, YANG Xiong, et al.Current status and development recommendations for CNPC’s shale oil and gas engineering technology[J]. Acta Petrolei Sinica, 2024, 45(10): 1552-1564. [9] RYLANCE M, PEARSON M, FOWLER G, et al.Conventional and unconventional developments part I: What applies, where and why?[C]//SPE Hydraulic Fracturing Technology Conference and Exhibition. SPE, 2025: D021S006R001. [10] 胡东风, 魏志红, 魏祥峰, 等. 四川盆地复兴地区侏罗系凉高山组陆相页岩油气勘探突破及启示[J]. 天然气工业, 2025, 45(1): 1-13. HU Dongfeng, WEI Zhihong, WEI Xiangfeng, et al.Breakthrough in the exploration of continental shale oil/gas of Jurassic Lianggaoshan Formation in the Fuxing area of the Sichuan Basin and its inspiration[J]. Natural Gas Industry, 2025, 45(1): 1-13. [11] 肖佳林, 李保林, 游园, 等. 复兴区块陆相页岩压裂成缝特征与增产改造策略分析[J]. 断块油气田, 2024, 31(6): 1066-1075. XIAO Jialin, LI Baolin, YOU Yuan, et al.Analysis of fracturing fracture characteristics and production increase and stimulation strategy of continental shale in Fuxing Block[J]. Fault-Block Oil & Gas Field, 2024, 31(6): 1066-1075. [12] 朱海燕, 徐鑫勤, 钟安海, 等. 深层页岩油水平井密切割裂缝均衡扩展数值模拟: 以胜利油田YYP1井为例[J]. 石油与天然气地质, 2022, 43(1): 229-240. ZHU Haiyan, XU Xinqin, ZHONG Anhai, et al.Numerical simulation of evenly propagating hydraulic fractures with smaller cluster spacing in the horizontal well YYP1 for deep shale oil in the Shengli Oilfield[J]. Oil & Gas Geology, 2022, 43(1): 229-240. [13] 蒋廷学. 水平井分段压裂多簇裂缝均衡起裂与延伸控制方法研究[J]. 重庆科技学院学报(自然科学版), 2022, 24(2): 1-8. JIANG Tingxue.Study of control method for multi-cluster fractures uniform crack and propagation in horizontal well staged fracturing[J]. Journal of Chongqing University of Science and Technology (Natural Sciences Edition), 2022, 24(2): 1-8. [14] 李嘉成, 邹家伟, 田刚, 等. 基于地质工程一体化压裂模型的页岩油压裂方案优化: 以吉木萨尔凹陷芦草沟组为例[J]. 断块油气田, 2025, 32(1): 35-46. LI Jiacheng, ZOU Jiawei, TIAN Gang, et al.Shale oil fracturing scheme optimization based on geology-engineering integrated fracturing model: Taking Lucaogou Formation, Jimsar Sag as an example[J]. Fault-Block Oil & Gas Field, 2025, 32(1): 35-46. [15] 刘曰武, 高大鹏, 李奇, 等. 页岩气开采中的若干力学前沿问题[J]. 力学进展, 2019, 49(0): 1-236. LIU Yuewu, GAO Dapeng, LI Qi, et al.Mechanical frontiers in shale-gas development[J]. Advances in Mechanics, 2019, 49(0): 1-236. [16] GEERTSMA J, DE KLERK F.A rapid method of predicting width and extent of hydraulically induced fractures[J]. Journal of Petroleum Technology, 1969, 21(12): 1571-1581. [17] MILLER C, WATERS G, RYLANDER E. Evaluation of production log data from horizontal wells drilled in organic shales[C]//North American Unconventional Gas Conference and Exhibition. SPE, 2011: SPE-144326-MS. [18] 赵超峰, 张伟, 田建涛, 等. 微地震事件解释实例[J]. 石油地球物理勘探, 2018, 53(4): 770-777. ZHAO Chaofeng, ZHANG Wei, TIAN Jiantao, et al.Interpretation examples of microseismic events[J]. Oil Geophysical Prospecting, 2018, 53(4): 770-777. [19] 田建涛, 赵超峰, 张伟, 等. 水力压裂井中监测方法不对称压裂裂缝分析[J]. 石油物探, 2019, 58(4): 563-571. TIAN Jiantao, ZHAO Chaofeng, ZHANG Wei, et al.Analysis of asymmetric hydraulic fracture for borehole microseismic monitoring[J]. Geophysical Prospecting for Petroleum, 2019, 58(4): 563-571. [20] HU X, LIU G, LUO G, et al.Model for asymmetric hydraulic fractures with nonuniform-stress distribution[J]. SPE Production & Operations, 2020, 35(4): 719-729. [21] DAMJANAC B, MAXWELL S, PIRAYEHGAR A, et al.Numerical study of stress shadowing effect on fracture initiation and interaction between perforation clusters[C]//Proceedings of the 6th Unconventional Resources Technology Conference. American Association of Petroleum Geologists, 2018. [22] FISCHER T, HAINZL S, DAHM T.The creation of an asymmetric hydraulic fracture as a result of driving stress gradients[J]. Geophysical Journal International, 2009, 179(1): 634-639. [23] 王光付, 李凤霞, 王海波, 等. 四川盆地不同类型页岩气压裂难点和对策[J]. 石油与天然气地质, 2023, 44(6): 1378-1392. WANG Guangfu, LI Fengxia, WANG Haibo, et al.Difficulties and countermeasures for fracturing of various shale gas reservoirs in the Sichuan Basin[J]. Oil & Gas Geology, 2023, 44(6): 1378-1392. [24] 张学平, 刘友权, 张鹏飞, 等. 大川中沙溪庙致密砂岩储层支撑裂缝导流能力的影响因素[J]. 石油与天然气化工, 2024, 53(3): 92-97. ZHANG Xueping, LIU Youquan, ZHANG Pengfei, et al.Influencing factors of the fracture conductivity of propped cracks in the Shaximiao tight sandstone reservoir in central Sichuan[J]. Chemical Engineering of Oil & Gas, 2024, 53(3): 92-97. [25] 易良平, 杨长鑫, 杨兆中, 等. 天然裂缝带对深层页岩压裂裂缝扩展的影响规律[J]. 天然气工业, 2022, 42(10): 84-97. YI Liangping, YANG Changxin, YANG Zhaozhong, et al.Influence of natural fracture zones on the propagation of hydraulic fractures in deep shale[J]. Natural Gas Industry, 2022, 42(10): 84-97. [26] 付世豪, 侯冰, 夏阳, 等. 多岩性组合层状储层一体化压裂裂缝扩展试验研究[J]. 煤炭学报, 2021, 46(增刊1): 377-384. FU Shihao, HOU Bing, XIA Yang, et al.Experimental research on hydraulic fracture propagation in integrated fracturing for layered formation with multi-lithology combination[J]. Journal of China Coal Society, 2021, 46(Suppl. 1): 377-384. [27] LIU J, MEI L, DING W, et al.Asymmetric propagation mechanism of hydraulic fracture networks in continental reservoirs[J]. GSA Bulletin, 2023, 135(3/4): 678-688. [28] 郭建春, 苟波. 非对称3D压裂和裂缝无序性压裂设计理念与实践: 以四川盆地川西致密砂岩气藏为例[J]. 天然气工业, 2015, 35(1): 74-80. GUO Jianchun, GOU Bo.Design philosophy and practices of asymmetrically 3D fracturing and the fracturing inducing a random array of fractures: A case study of tight sand gas reservoirs in western Sichuan Basin[J]. Natural Gas Industry, 2015, 35(1): 74-80. [29] 雍锐, 丘阳, 周福建, 等. 基于高频水击压力页岩气井暂堵效果评价[J]. 石油科学通报, 2024, 9(5): 789-797. YONG Rui, QIU Yang, ZHOU Fujian, et al.The evaluation of temporary plugging effect in shale gas wells based on high-frequency water hammer pressure[J]. Petroleum Science Bulletin, 2024, 9(5): 789-797. [30] 李绍鹏, 李常兴, 周鹏, 等. 页岩气水平井暂堵坐封机制与可控暂堵压裂工艺[J]. 断块油气田, 2024, 31(3): 432-438. LI Shaopeng, LI Changxing, ZHOU Peng, et al.Temporary plugging setting mechanism and controllable temporary plugging fracturing technology of shale gas horizontal wells[J]. Fault-Block Oil & Gas Field, 2024, 31(3): 432-438. [31] WEDDLE P, GRIFFIN L, PEARSON C M.Mining the bakken II-pushing the envelope with extreme limited entry perforating[C]//SPE Hydraulic Fracturing Technology Conference and Exhibition. SPE, 2018: D031S008R002. |