[1] 王君珂. 献县地热田地热控热因素及资源潜力分析[D]. 石家庄: 河北地质大学, 2019. WANG Junke.Analysis on thermal control factors and resource potential of geothermal fields in Xianxian county[D]. Shijiazhuang: Hebei GEO University, 2019. [2] 马峰, 王贵玲, 张薇, 等. 雄安新区容城地热田热储空间结构及资源潜力[J]. 地质学报, 2020, 94(7): 1981-1990. MA Feng, WANG Guiling, ZHANG Wei, et al.Structure of geothermal reservoirs and resource potential in the Rongcheng geothermal field in Xiongan New Area[J]. Acta Geologica Sinica, 2020, 94(7): 1981-1990. [3] 丛淑飞, 周宏, 赵艳, 等. 大民屯凹陷沈水501中深层地热田三维地质建模技术研究[J]. 油气藏评价与开发, 2023, 13(6): 741-748. CONG Shufei, ZHOU Hong, ZHAO Yan, et al.3D geological modeling technology of medium-deep geothermal field in Shenshui 501 geothermal field in Damintun Sag[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(6): 741-748. [4] SEYEDRAHIMI-NIARAQ M, DOULATI ARDEJANI F, NOOROLLAHI Y, et al.A three-dimensional numerical model to simulate Iranian NW Sabalan geothermal system[J]. Geothermics, 2019, 77: 42-61. [5] FLORIDIA G, CACACE M, SCHECK-WENDEROTH M, et al.3D thermal model of Sicily (Southern Italy) and perspectives for new exploration campaigns for geothermal resources[J]. Global and Planetary Change, 2022, 218: 103976. [6] ABOUD E, ABRAHAM E, ALQAHTANI F, et al.High potential geothermal areas within the Rahat volcanic field, Saudi Arabia, from gravity data and 3D geological modeling[J]. Acta Geophysica, 2024, 72(3): 1713-1729. [7] TIAN X M, VOLKOV O, VOSKOV D.An advanced inverse modeling framework for efficient and flexible adjoint-based history matching of geothermal fields[J]. Geothermics, 2024, 116: 102849. [8] 盖长城, 李洪达, 任路, 等. 地热数值模拟与油藏数值模拟方法对比分析[J]. 油气藏评价与开发, 2024, 14(6): 849-856. GAI Changcheng, LI Hongda, REN Lu, et al.Comparative analysis of geothermal and reservoir numerical simulation methods[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(6): 849-856. [9] 朱红光, 易成, 谢和平, 等. 基于立方定律的岩体裂隙非线性流动几何模型[J]. 煤炭学报, 2016, 41(4): 822-828. ZHU Hongguang, YI Cheng, XIE Heping, et al.A new geometric model for non-linear flow in rough-walled fractures based on the cubic law[J]. Journal of China Coal Society, 2016, 41(4): 822-828. [10] 许光祥, 张永兴, 哈秋舲. 粗糙裂隙渗流的超立方和次立方定律及其试验研究[J]. 水利学报, 2003, 34(3): 74-79. XU Guangxiang, ZHANG Yongxing, HA Qiuling.Super-cubic and sub-cubic law of rough fracture seepage and its experiments study[J]. Journal of Hydraulic Engineering, 2003, 34(3): 74-79. [11] 高瑜, 叶咸, 夏强. 基于等效连续介质模型的单裂隙渗流数值模拟研究[J]. 地下水, 2016, 38(5): 40-43. GAO Yu, YE Xian, XIA Qiang.Study on numerical simulation of single fracture seepage based on equivalent continuum model[J]. Ground Water, 2016, 38(5): 40-43. [12] 单丹丹, 闫铁, 李玮, 等. 单裂隙热储热流耦合数值模拟分析[J]. 当代化工, 2020, 49(4): 716-719. SHAN Dandan, YAN Tie, LI Wei, et al.Numerical simulation and analysis of thermal-hydraulic coupling in a single-fracture thermal reservoir[J]. Contemporary Chemical Industry, 2020, 49(4): 716-719. [13] 张树光, 李志建, 徐义洪, 等. 裂隙岩体流-热耦合传热的三维数值模拟分析[J]. 岩土力学, 2011, 32(8): 2507-2511. ZHANG Shuguang, LI Zhijian, XU Yihong, et al.Three-dimensional numerical simulation and analysis of fluid-heat coupling heat-transfer in fractured rock mass[J]. Rock and Soil Mechanics, 2011, 32(8): 2507-2511. [14] 柯婷婷, 黄少鹏, 许威, 等. 关中盆地沣西地区地热对井采灌开发模式的数值模拟[J]. 第四纪研究, 2019, 39(5): 1252-1263. KE Tingting, HUANG Shaopeng, XU Wei, et al.Numerical modeling of doublet well system for extracting heat from sandstone geothermal reservoir: A case study of Fengxi area, the Guanzhong basin, nw China[J]. Quaternary Sciences, 2019, 39(5): 1252-1263. [15] 杜广林, 周维垣, 赵吉东. 裂隙介质中的多重裂隙网络渗流模型[J]. 岩石力学与工程学报, 2000, 19(增刊1): 1014-1018. DU Guanglin, ZHOU Weiyuan, ZHAO Jidong.Multiple fracture network seepage model for fractured media[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(Suppl. 1): 1014-1018. [16] 林承焰, 王杨, 杨山, 等. 基于CT的数字岩心三维建模[J]. 吉林大学学报(地球科学版), 2018, 48(1): 307-317. LIN Chengyan, WANG Yang, YANG Shan, et al.3D modeling of digital core based on X-ray computed tomography[J]. Journal of Jilin University (Earth Science Edition), 2018, 48(1): 307-317. [17] 黄旭, 沈传波, 杜利, 等. 沧县隆起中段献县凸起和阜城凹陷岩溶型地热资源特征[J]. 现代地质, 2021, 35(4): 997-1008. HUANG Xu, SHEN Chuanbo, DU Li, et al.Geothermal geological characteristics of the Xianxian high and Fucheng Sag in the middle Cangxian uplift, Bohai Bay Basin[J]. Geoscience, 2021, 35(4): 997-1008. [18] 王君珂, 朱喜, 刘彦广, 等. 献县地热田地温场特征及控热因素研究[J]. 能源与环保, 2020, 42(1): 113-120. WANG Junke, ZHU Xi, LIU Yanguang, et al.Study on earth temperature field characteristics and heat controlling factors in geothermal field of Xianxian County[J]. China Energy and Environmental Protection, 2020, 42(1): 113-120. [19] 汪新伟, 高楠安, 王婷灏, 等. 河北献县地热田地热异常的分布特征及成因机制[J]. 地质学报, 2022, 96(7): 2611-2625. WANG Xinwei, GAO Nan’an, WANG Tinghao, et al.Distribution characteristics and genetic mechanism of the geothermal abnormality in the Xianxian geothermal field, Hebei Province[J]. Acta Geologica Sinica, 2022, 96(7): 2611-2625. [20] 张庆福, 黄朝琴, 姚军, 等. 多尺度嵌入式离散裂缝模型模拟方法[J]. 计算力学学报, 2018, 35(4): 507-513. ZHANG Qingfu, HUANG Zhaoqin, YAO Jun, et al.Multiscale embedded discrete fracture modeling method[J]. Chinese Journal of Computational Mechanics, 2018, 35(4): 507-513. [21] 朱亚军, 李进步, 陈龙, 等. 苏里格气田大井组立体开发关键技术[J]. 石油学报, 2018, 39(2): 208-215. ZHU Yajun, LI Jinbu, CHEN Long, et al.Key technology of large-well-group stereoscopic development in Sulige gasfield[J]. Acta Petrolei Sinica, 2018, 39(2): 208-215. [22] 秦祥熙. 河北省献县隆起蓟县系雾迷山组热储层增产技术研究[D]. 北京: 中国地质大学(北京), 2021. QIN Xiangxi.Study on stimulation technology of thermal reservoir of wumishan formation of Jixian system in Xianxian uplift, Hebei Province[D]. Beijing: China University of Geosciences, 2021. [23] 郎晓玲, 郭召杰. 基于DFN离散裂缝网络模型的裂缝性储层建模方法[J]. 北京大学学报(自然科学版), 2013, 49(6): 964-972. LANG Xiaoling, GUO Zhaojie.Fractured reservoir modeling method based on discrete fracture network model[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2013, 49(6): 964-972. [24] 乔辉, 张永贵, 聂海宽, 等. 页岩储层多尺度天然裂缝表征与三维地质建模: 以四川盆地平桥构造带五峰组-龙马溪组页岩为例[J]. 地学前缘, 2024, 31(5): 89-102. QIAO Hui, ZHANG Yonggui, NIE Haikuan, et al.Characterization and 3D modeling of multiscale natural fractures in shale gas reservoir: A case study in the Pingqiao structural belt, Sichuan Basin[J]. Earth Science Frontiers, 2024, 31(5): 89-102. [25] 李红波. 哈得逊东河砂岩储层构型模式对剩余油分布的影响研究[D]. 成都: 成都理工大学, 2012. LI Hongbo.The influence of reservoir architecture model in Hudson Donghe sandstone reservoir to the remaining oil distribution patterns[D]. Chengdu: Chengdu University of Technology, 2012. [26] 张瑾, 张凤奇, 邹彦荣, 等. 地热水溶型和天然气伴生型氦气来源特征对比: 以渭河盆地和鄂尔多斯盆地北部为例[J]. 油气藏评价与开发, 2025, 15(3): 463-470. ZHANG Jin, ZHANG Fengqi, ZOU Yanrong, et al.Comparison of helium source characteristics between geothermal water-dissolved type and natural gas-associated type: A case study of Weihe Basin and northern Ordos Basin[J]. Petroleum Reservoir Evaluation and Development, 2025, 15(3): 463-470. [27] 刘健, 曹强, 任小庆, 等. 基于水—热—化耦合数值模拟的地热田开发方案优化设计: 以河北雄安新区岩溶热储为例[J]. 石油实验地质, 2025, 47(2): 406-416. LIU Jian, CAO Qiang, REN Xiaoqing, et al.Optimization design of geothermal field development schemes based on hydraulic, thermal and chemical coupled numerical simulation: A case study of karst thermal reservoir in Xiong’an New Area, Hebei Province[J]. Petroleum Geology & Experiment, 2025, 47(2): 406-416. [28] 李红岩, 高小荣, 任小庆, 等. 雄安新区三维地热地质模型方法研究[J]. 地质与资源, 2024, 33(2): 222-229. LI Hongyan, GAO Xiaorong, REN Xiaoqing, et al.3d geothermal geological modeling method of xiong'an new area[J]. Geology and Resources, 2024, 33(2): 222-229. [29] 孙致学, 姜传胤, 张凯, 等. 基于离散裂缝模型的CO2增强型地热系统THM耦合数值模拟[J]. 中国石油大学学报(自然科学版), 2020, 44(6): 79-87. SUN Zhixue, JIANG Chuanyin, ZHANG Kai, et al.Numerical simulation for heat extraction of CO2-EGS with thermal-hydraulic-mechanical coupling method based on discrete fracture models[J]. Journal of China University of Petroleum (Edition of Natural Science), 2020, 44(6): 79-87. |