[1] 王双明, 王虹, 任世华, 等. 西部地区富油煤开发利用潜力分析和技术体系构想[J]. 中国工程科学, 2022, 24(3): 49-57. WANG Shuangming, WANG Hong, REN Shihua, et al.Potential analysis and technical conception of exploitation and utilization of tar-rich coal in western china[J]. Strategic Study of CAE, 2022, 24(3): 49-57. [2] 王双明, 师庆民, 孙强, 等. 富油煤原位热解技术战略价值与科学探索[J]. 煤田地质与勘探, 2024, 52(7): 1-13. WANG Shuangming, SHI Qingmin, SUN Qiang, et al.Strategic value and scientific exploration of in-situ pyrolysis of tar-rich coals[J]. Coal Geology & Exploration, 2024, 52(7): 1-13. [3] 段中会, 杨甫, 王振东, 等. 陕北富油煤地下原位热解先导试验[J]. 煤田地质与勘探, 2024, 52(7): 14-24. DUAN Zhonghui, YANG Fu, WANG Zhendonget al. Pilot experiment for underground in-situ pyrolysis of tar-rich coal in the northern Shaanxi Province[J]. Coal Geology & Exploration, 2024, 52(7): 14-24. [4] 王双明, 师庆民, 王生全, 等. 富油煤的油气资源属性与绿色低碳开发[J]. 煤炭学报, 2021, 46(5): 1365-1377. WANG Shuangming, SHI Qingmin, WANG Shengquan, et al.Resource property and exploitation concepts with green and low-carbon of tar-rich coal as coal-based oil and gas[J]. Journal of China Coal Society, 2021, 46(5): 1365-1377. [5] 周安宁, 张致, 陈永安, 等. 铈改性磁性核壳HZSM-5催化富油煤热解研究[J]. 煤田地质与勘探, 2024, 52(7): 144-155. ZHOU Anning, ZHANG Zhi, CHEN Yongan, et al.Exploring the pyrolysis of tar-rich coals under the catalysis of cerium-modified magnetic core-shell HZSM-5[J]. Coal Geology & Exploration, 2024, 52(7): 144-155. [6] 王双明, 鲍园, 郝永辉, 等. 富油煤研究进展与趋势[J]. 煤田地质与勘探, 2024, 52(4): 1-11. WANG Shuangming, BAO Yuan, HAO Yonghui, et al.Research on tar-rich coals: Progress and prospects[J]. Coal Geology & Exploration, 2024, 52(4): 1-11. [7] 桑树勋, 李瑞明, 刘世奇, 等. 新疆煤层气大规模高效勘探开发关键技术领域研究进展与突破方向[J]. 煤炭学报, 2024, 49(1): 563-585. SANG Shuxun, LI Ruiming, LIU Shiqi, et al.Research progress and breakthrough directions of the key technical fields for large scale and efficient exploration and development of coalbed methane in Xinjiang[J]. Journal of China Coal Society, 2024, 49(1): 563-585. [8] 乔军伟, 王昌建, 赵泓超, 等. 基于煤岩煤质多元指标的BP神经网络焦油产率预测方法研究[J]. 煤田地质与勘探, 2024, 52(7): 108-118. QIAO Junwei, WANG Changjian, ZHAO Hongchao, et al.A method for predicting the tar yield of tar-rich coals based on the BP neural network using multiple indicators of coal petrography and coal quality[J]. Coal Geology & Exploration, 2024, 52(7): 108-118. [9] 田华, 王前吉, 张晴, 等. 富油煤热解焦油在粉砂中的自然降解与挥发行为[J]. 环境工程学报, 2023, 17(8): 2665-2673. TIAN Hua, WANG Qianji, ZHANG Qing, et al.Natural degradation and volatilization of oil-rich coal pyrolysis tar in siltly sand[J]. Chinese Journal of Environmental Engineering, 2023, 17(8): 2665-2673. [10] 王振东, 段中会, 杨甫, 等. 富油煤地下原位热解井下加热器研究现状及展望[J]. 煤田地质与勘探, 2024, 52(7): 35-45. WANG Zhendong, DUAN Zhonghui, YANG Fu, et al.Downhole heaters for in-situ pyrolysis of tar-rich coals: A review and prospects[J]. Coal Geology & Exploration, 2024, 52(7): 35-45. [11] 程坤. 我国煤炭资源勘查开发主要问题及对策措施[J]. 中国煤炭, 2024, 50(7): 1-7. CHENG Kun.Research on the main problems and countermeasures of coal resources exploration and development in China[J]. China Coal, 2024, 50(7): 1-7. [12] 薛香玉, 王长安, 邓磊, 等. 基于全生命周期的富油煤原位热解碳排放[J]. 煤炭学报, 2023, 48(4): 1773-1781. XUE Xiangyu, WANG Chang'an, DENG Lei, et al. Carbon emissions from in-situ pyrolysis of tar-rich coal based on full life cycle analysis method[J]. Journal of China Coal Society, 2023, 48(4): 1773-1781. [13] 付德亮, 段中会, 杨甫, 等. 富油煤钻井式地下原位热解提取煤基油气资源的几个关键问题[J]. 煤炭学报, 2023, 48(4): 1759-1772. FU Deliang, DUAN Zhonghui, YANG Fu, et al.Key problems in in-situ pyrolysis of tar-rich coal drilling for extraction of coal-based oil and gas resources[J]. Journal of China Coal Society, 2023, 48(4): 1759-1772. [14] 王双明, 孙强, 胡鑫, 等. 不同气氛下富油煤受热裂隙演化及热解动力学参数变化[J]. 煤炭科学技术, 2024, 52(1): 15-24. WANG Shuangming, SUN Qiang, HU Xin, et al.Fissure evolution and variation of pyrolysis kinetics parameters of tar-rich coal during heat treatment under different atmosphere[J]. Coal Science and Technology, 2024, 52(1): 15-24. [15] 王苗, 王长安, 宁星, 等. 富油煤原位热解技术研究现状及进展[J]. 煤炭学报, 2024, 49(9): 3969-3984. WANG Miao, WANG Chang’an, NING Xing, et al.Research progress of in-situ pyrolysis technology for tar-rich coal[J]. Journal of China Coal Society, 2024, 49(9): 3969-3984. [16] 东振, 张梦媛, 陈艳鹏, 等. 三塘湖-吐哈盆地富油煤赋存特征与资源潜力分析[J]. 煤炭学报, 2023, 48(10): 3789-3805. DONG Zhen, ZHANG Mengyuan, CHEN Yanpeng, et al.Analysis on the occurrence characteristics and resource potential of tar-rich coal in Santanghu and Turpan-Hami Basins[J]. Journal of China Coal Society, 2023, 48(10): 3789-3805. [17] 曹景沛, 姚乃瑜, 庞新博, 等. 煤热解研究进展及其发展历程[J]. 化工进展, 2024, 43(7): 3620-3636. CAO Jingpei, YAO Naiyu, PANG Xinbo, et al.Research progress and development history of coal pyrolysis[J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3620-3636. [18] 田华, 张若琳, 王前吉, 等. 富油煤原位热解典型污染物时空分布特征[J]. 煤田地质与勘探, 2024, 52(7): 64-72. TIAN Hua, ZHANG Ruolin, WANG Qianji, et al.Spatiotemporal distributions of typical contaminants from the in-situ pyrolysis of tar-rich coals[J]. Coal Geology & Exploration, 2024, 52(7): 64-72. [19] 王双明, 申艳军, 孙强, 等. "双碳"目标下煤炭开采扰动空间CO2地下封存途径与技术难题探索[J]. 煤炭学报, 2022, 47(1): 45-60. WANG Shuangming, SHEN Yanjun, SUN Qiang, et al.Underground CO2 storage and technical problems in coal mining area under the "dual carbon" target[J]. Journal of China Coal Society, 2022, 47(1): 45-60. [20] 王佟, 张博, 王庆伟, 等. 中国绿色煤炭资源概念和内涵及评价[J]. 煤田地质与勘探, 2017, 45(1): 1-8+13. WANG Tong, ZHANG Bo, WANG Qingwei, et al.Green coal resources in China: Concept, characteristics and assessment[J]. Coal Geology & Exploration, 2017, 45(1): 1-8, 13. [21] 梁丽彤, 黄伟, 张乾, 等. 低阶煤催化热解研究现状与进展[J]. 化工进展, 2015, 34(10): 3617-3622+3675. LIANG Litong, HUANG Wei, ZHANG Qian, et al. Research status and advances in catalytic pyrolysis of low-rank coal[J]. Chemical Industry and Engineering Progress, 2015, 34(10): 3617-3622+3675. [22] 王向辉, 门卓武, 许明, 等. 低阶煤粉煤热解提质技术研究现状及发展建议[J]. 洁净煤技术, 2014, 20(6): 36-41. WANG Xianghui, MEN Zhuowu, XU Ming, et al.Research status and development proposals on pyrolysis techniques of low rank pulverized coal[J]. Clean Coal Technology, 2014, 20(6): 36-41. [23] 马丽, 段中会, 杨甫, 等. "双碳"背景下煤炭原位地下热解采油意义研究[J]. 中国煤炭地质, 2022, 34(4): 5-7. Ma Li, Duan Zhonghui1, Yang Fu, et al. Study on the Significance of Coal In–situ Underground Pyrolytic Oil Production under Carbon Peaking and Carbon Neutrality Background[J]. Coal Geology of China, 2022, 34(4): 5-7. [24] 俞尊义, 郭伟, 杨盼曦, 等. 陕北富油煤热解提油产物分布特性研究[J]. 煤田地质与勘探, 2024, 52(7): 176-188. YU Zunyi, GUO Wei, YANG Panxi, et al.Distributions of products from the pyrolysis of tar-rich coals for tar extraction in northern Shaanxi Province, China[J]. Coal Geology & Exploration, 2024, 52(7): 176-188. [25] 邹卓, 张莉, 孙杰, 等. 富油煤热解技术及利用前景研究[J]. 中国煤炭地质, 2022, 34(11): 31-34. ZOU Zhuo, ZHANG Li, SUN Jie, et al.Study on Pyrolysis Technology and Utilization Prospect of Oil-rich Coal[J]. Coal Geology of China, 2022, 34(11): 31-34. [26] 范振华, 李绍京, 寇竹娟. 煤焦化过程中污染物的产生与控制[J]. 煤炭转化, 1997, (4): 34-40. FAN Zhenhua, LI Shaojing, KOU Zhujuan, Pproducing and controlling of the pollutant in the coal's coking process[J]. Coal Conversation, 1997, (4): 34-40. [27] 狄子琛, 雷飞霞, 常成功, 等. 焦化行业碳氢资源利用潜力与低碳路径评价[J]. 化工进展, 2024, 43(5): 2862-2871. DI Zichen, LEI Feixia, CHANG Chenggong, et al.Evaluation of hydrocarbon resource utilization potential and low-carbon path in the coking industry[J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2862-2871. [28] 贾晓洋, 姜林, 夏天翔, 等. 焦化厂土壤中PAHs的累积、垂向分布特征及来源分析[J]. 化工学报, 2011, 62(12): 3525-3531. JIA Xiaoyang, JIANG Lin, XIA Tianxiang, et al.Analysis on accumulation, distribution and origin of polycyclic aromatic hydrocarbons in soils under a coking plant[J]. CIESC Journal, 2011, 62(12): 3525-3531. [29] 高浩. 陕北富油煤热解提油基础特性及煤焦油净化机理研究[D]. 西安: 西安科技大学, 2021. GAO Hao.Basic characteristics of oil extraction from northern Shaanxi oil rich coal pyrolysis and purincation mechanism of coal tar[D]. Xi'an: Xi'an University of Science And Technology, 2021. [30] 戴厚良. 芳烃生产技术展望[J]. 石油炼制与化工, 2013, 44(1): 1-10. DAI Houliang. outlook of aromatics production technology[J]. Petroleum Processing and Petrochemicals, 2013, 44(1): 1-10. [31] 张晓静. 中低温煤焦油加氢技术[J]. 煤炭学报, 2011, 36(5): 840-844. ZHANG Xiaojing.Hydrogenating process for coal tar from mid-low-temperature coal carbonization[J]. journal of China coal society, 2011, 36(5): 840-844. [32] 邱泽刚, 李壮壮, 李志勤. 中低温煤焦油转化利用技术研究进展[J]. 石油学报(石油加工), 2024, 40(4): 953-964. QIU Zegang, LIZ Huangzhuang, LI Zhiqin, Research Progress in Conversion and Utilization Technology of Middle/Low-Temperature Coal Tar[J]. Acta Petrolei Sinica(Petroleum Processing Section). 2024, 40(4): 953-964. [33] 朱汉雄, 王一, 茹加, 等. "双碳"目标下推动能源技术区域综合示范的路径思考[J]. 中国科学院院刊, 2022, 37(4): 559-566. ZHU Hanxiong, Wang Yi, Ru Jia, et al.Thoughts on regional path of promoting comprehensive demonstration of low-carbon energy technology under "dual carbon" goals. Bulletin of Chinese Academy of Sciences, 2022, 37(4): 559-566. [34] 葛世荣, 刘淑琴, 刘金昌, 等. 能源强国目标下煤炭安全保供及高效降碳效力研究[J]. 中国工程科学, 2024, 26(4): 40-51. GE Shirong, Liu Shuqin, Liu Jinchang, et al.Effectiveness of Secure Supply and Carbon Reduction in the Coal Sector for Strengthening the Energy Power of China, Strategic Study of CAE, 2024, 26(4): 40-51. [35] 王国法, 任世华, 庞义辉, 等. 煤炭工业"十三五"发展成效与"双碳"目标实施路径[J]. 煤炭科学技术, 2021, 49(9): 1-8. WANG Guofa, REN Shihua, PANG Yihui, et al.Development achievements of China's coal industry during the 13th Five-Year Plan period and implementation path of "dual carbon" target[J]. Coal Science and Technology, 2021, 49(9): 1-8. [36] 葛世荣, 刘淑琴, 樊静丽, 等. 低碳化现代煤基能源开发关键技术体系[J]. 煤炭学报, 2024, 49(7): 2949-2972. GE Shirong, LIU Shuqing, FAN Jingli, et al.Key technologies for low-carbon modern coal-based energy[J]. journal of China coal society, 2024, 49(7): 2949-2972. [37] 周张锋, 李兆基, 潘鹏斌, 等. 煤制乙二醇技术进展[J]. 化工进展, 2010, 29(11): 2003-2009. ZHOU Zhangfeng, LI Zhaoji, PAN Pengbin, et al.Progress in technologies of coal-based ethylene glycol synthesis[J]. Chemical Industry and Engineering Progress, 2010, 29(11): 2003-2009. [38] 刘峰, 曹文君, 张建明, 等. 我国煤炭工业科技创新进展及"十四五"发展方向[J]. 煤炭学报, 2021, 46(1): 1-15. LIU Feng, CAO Wengjun, ZHANG Jianming, et al.Current technological innovation and development direction of the 14th Five-Year Plan period in China coal industry[J]. Journal of China coal society, 2021, 46(1): 1-15. [39] 胡耀青, 赵阳升, 杨栋, 等. 温度对褐煤渗透特性影响的试验研究[J]. 岩石力学与工程学报, 2010, 29(8): 1585-1590. HU Yaoqing, ZHAO Yangsheng, YANG Dong, et al.Experimental study of effect of temperature on permeability characteristics of lignite[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(8): 1585-1590. [40] 谢和平, 王金华, 王国法, 等. 煤炭革命新理念与煤炭科技发展构想[J]. 煤炭学报, 2018, 43(5): 1187-1197. XIE Heping, WANG Jinhua, WANG Guofa, et al.New ideas of coal revolution and layout of coal science and technology development[J]. Journal of China Coal Society, 2018, 43(5): 1187-1197. [41] 王双明, 孙强, 胡鑫, 等. 煤炭原位开发地质保障[J]. 西安科技大学学报, 2024, 44(1): 1-11. WANG Shuangming, SUN Qiang, HU Xin, et al.Geological guarantee for in-situ development of coal[J]. Journal of Xi'an University of Science and Technology, 2024, 44(1): 1-11. [42] 唐颖, 吴晓丹, 李乐忠, 等. 富油煤原位热解地下加热技术及其高效工艺[J]. 洁净煤技术, 2023, 29(12): 42-50. TANG Ying, WU Xiaodan, LI Lezhong, et al.Heating technology of in-situ pyrolysis for tar-rich coal and its high efficiency process[J]. Clean Coal Technology, 2023, 29(12): 42-50. [43] 郭威, 刘召, 孙友宏, 等. 富油煤原位热解开发地下体系封闭方法探讨[J]. 煤田地质与勘探, 2023, 51(1): 107-114. GUO Wei, LIU Zhao, SUN Youhong, et al.Discussion on underground system sealing methods in in-situ pyrolysis exploitation of tar-rich coal[J]. Coal Geology & Exploration, 2023, 51(1): 107-114. [44] 李改改, 姜鹏飞, 黄佳齐, 等. 富油煤热解过程动力学参数变化规律研究[J]. 煤炭技术, 2023, 42(10): 52-56. LI Gaigai, JIANG Pengfei, HUANG Jiaqi, et al.Study on Change of Kinetic Parameters of Tar-rich Coal during Pyrolysis[J]. Coal Technology, 2023, 42(10): 52-56. [45] 袁士义, 王强. 中国油田开发主体技术新进展与展望[J]. 石油勘探与开发, 2018, 45(4): 657-668. YUAN Shiyi, WANG Qiang, New progress and prospect of oilfields development technologies in China[J]. Petroleum Exploration and Development, 2018, 45(4): 657-668. [46] 于连东. 世界稠油资源的分布及其开采技术的现状与展望[J]. 特种油气藏, 2001, 2: 98-103+110. YU Liandong, Distribution of Tight Oil Resources in the World and the Present Situation and Prospect of Their Extraction Technology[J]. Special Oil and Gas Reservoirs, 2001, 2: 98-103+110. [47] 计秉玉. 国内外油田提高采收率技术进展与展望[J]. 石油与天然气地质, 2012, 33(1): 111-117. JI Bingyu, Progress and prospects of enhanced oil recovery technologies at home and abroad[J]. Oil and Gas Geology, 2012, 33(1): 111-117. [48] 张磊. 基于可持续发展的新疆矿产资源开发利用研究[D]. 乌鲁木齐: 新疆大学, 2006. ZHANG Lei, Exploitation on Xinjiang’s mineral resource based on the theory of sustainable development[D]. Urumqi: Xinjiang University, 2006. [49] 葛世荣, 王兵, 冯豪豪, 等. 煤基能源动态碳中和模式及其保供降碳效益评估[J]. 中国工程科学, 2023, 25(5): 122-135. GE Shirong, WANG Bing, FENG Haohao, et al.Dynamic Carbon Neutrality Mode for Coal-Based Energy Systems and Effectiveness Assessment Thereof[J]. Strategic Study of CAE, 2023, 25(5): 122-135. [50] 吴志强, 杨盼曦, 郭伟, 等. 富油煤绿色低碳转化技术研究进展[J]. 绿色矿山, 2023, 1(01): 138-165. WU Zhiqiang, YANG Panxi, GUO Wei, Research progress on green and low-carbon conversion technology of oil-rich coal[J]. Journal of Mine, 2023, 1(01): 138-165. [51] 杨甫, 程相强, 李明杰, 等. 富油煤原位热解多物理场演化规律数值模拟研究[J]. 煤田地质与勘探, 2024, 52(7): 25-34. YANG Fu, CHENG Xiangqiang, LI Mingjie, et al.Numerical simulations of the evolutionary patterns of multi-physical fields during the in-situ pyrolysis of tar-rich coals[J]. Coal Geology & Exploration, 2024, 52(7): 25-34. [52] 来兴平, 方贤威. "双碳"目标驱动西部煤炭分阶控碳减熵增效与协同发展路径[J]. 西安科技大学学报, 2022, 42(5): 841-848. LAI Xingping, FANG Xianwei.Exploration of carbon control, entropy reduction, efficiency increase and their coordinated development for coal in Western China under"Dual Carbon"target[J]. Journal of Xi'an University of Science and Technology, 2022, 42(5): 841-848. [53] 陈兆辉, 高士秋, 许光文. 煤热解过程分析与工艺调控方法[J]. 化工学报, 2017, 68(10): 3693-3707. CHEN Zhaohui, GAO Shiqiu, XU Guangwen, et al.Analysis and control methods of coal pyrolysis process[J]. CIESC Journal, 2017, 68(10): 3693-3707. [54] 徐建华. 西北地区3种新能源发电技术效能评估[J]. 系统仿真技术, 2018, 14(2): 140-144. XU Jianhua, Efficiency Evaluation of Three New Energy Generation Technologies in Northwest China[J]. System Simulation Technology, 2018, 14(2): 140-144. [55] 黄文章, 袁建军, 石国峰, 等. 风电制氢与煤化工集成系统可行性分析[J]. 现代化工, 2021, 41(7): 5-8. HUANG Wenzhang, YUAN Jianjun, SHI Guofeng, et al.Feasibility discussion about an integration system between hydrogen production by wind power and coal chemical industry[J]. Modern Chemical Industry, 2021, 41(7): 5-8. |