[1] |
邴绍献. 基于特高含水期油水两相渗流的水驱开发特征研究[D]. 成都:西南石油大学, 2013.
|
|
BING S X. Study on water drive development characteristics based on the oil-water two phase flow of ultra-high water cut stage[D]. Chengdu: Southwest Petroleum University, 2013.
|
[2] |
朱丽红, 杜庆龙, 姜雪岩, 等. 陆相多层砂岩油藏特高含水期三大矛盾特征及对策[J]. 石油学报, 2015,36(2):210-216.
|
|
ZHU L H, DU Q L, JIANG X Y, et al. Characteristics and strategies of three major contradictions for continental facies multi-layered sandstone reservoir at ultra-high water cut stage[J]. Acta Petrolei Sinica, 2015,36(2):210-216.
|
[3] |
雷群, 翁定为, 罗健辉, 等. 中国石油油气开采工程技术进展与发展方向[J]. 石油勘探与开发, 2019,46(1):139-145.
|
|
LEI Q, WENG D W, LUO J H, et al. Achievements and future work of oil and gas production engineering of CNPC[J]. Petroleum Exploration and Development, 2019,46(1):139-145.
|
[4] |
李爱华, 龙文达. 港中油田南一断块高含水后期提高开发效果研究[J]. 石油地质与工程, 2019,33(4):58-60.
|
|
LI A H, LONG W D. Improving development effect of high water cut in late development stage of Nanyi fault block of Gangzhong oilfield[J]. Petroleum Geology and Engineering, 2019,33(4):58-60.
|
[5] |
朱光普, 姚军, 张磊, 等. 特高含水期剩余油分布及形成机理[J]. 科学通报, 2017,62(22):2553-2563.
|
|
ZHU G P, YAO J, ZHANG L, et al. Pore-scale investigation of residual oil distributions and formation mechanisms at the extra-high water-cut stage[J]. Chinese Science Bulletin, 2017,62(22):2553-2563.
|
[6] |
李金宜, 马奎前, 朱文森, 等. 早期注聚油藏残余油类型及影响因素实验[J]. 石油钻采工艺, 2018,40(4):515-521.
|
|
LI J Y, MA K Q, ZHU W S, et al. Experimental study on the types and influential factors of residual oil in oil reservoirs after early polymer flooding[J]. Oil Drilling & Production Technology, 2018,40(4):515-521.
|
[7] |
胡伟, 吕成远, 王锐, 等. 水驱油藏注CO2非混相驱油机理及剩余油分布特征[J]. 油气地质与采收率, 2017,24(5):99-105.
|
|
HU W, LYU C Y, WANG R, et al. Mechanism of CO2 immiscible flooding and distribution of remaining oil in water drive oil reservoir[J]. Petroleum Geology and Recovery Efficiency, 2017,24(5):99-105.
|
[8] |
赵柏杨, 夏连晶. 低渗透油藏内烯烃磺酸盐微乳液体系配方优选及性能评价[J]. 油田化学, 2020,37(1):102-108.
|
|
ZHAO B Y, XIA L J. Formula optimization and performance evaluation of internal olefin sulfonate microemulsion system used in low permeability reservoir[J]. Oilfield Chemistry, 2020,37(1):102-108.
|
[9] |
曹静静, 杨矞琦. 国内低渗透油藏提高采收率技术现状及展望[J]. 四川化工, 2017,20(6):17-21.
|
|
CAO J J, YANG Y Q. The present situation and prospect of enhancing low permeability reservoir recovery technology in China[J]. Sichuan Chemical Industry, 2017,20(6):17-21.
|
[10] |
李剑, 段景杰, 姚振杰, 等. 低渗透油藏水驱后注CO2驱提高采收率影响因素分析[J]. 非常规油气, 2017,4(6):45-52.
|
|
LI J, DUAN J J, YAO Z J, et al. Analysis on influence factors of enhanced oil recovery in co2 flooding after water flooding in low permeability reservoir[J]. Unconventional Oil & Gas, 2017,4(6):45-52.
|
[11] |
储政. 黏土稳定剂NH-FB1在低渗透油藏注水井中的应用[J]. 能源化工, 2017,38(4):28-31.
|
|
CHU Z. Application of clay stabilizer NH-FB1 in water injection well of low permeability reservoir[J]. Energy Chemical Industry, 2017,38(4):28-31.
|
[12] |
吕腾. 低渗透油藏微乳液驱油提高采收率机理研究[D]. 大庆:东北石油大学, 2017.
|
|
LYU T. Study on the mechanism of enhanced oil recovery by microemulsion flooding in Low permeability reservoirs[D]. Daqing: Northeast Petroleum University, 2017.
|
[13] |
刘晨, 王业飞, 于海洋, 等. 低渗透油藏表面活性剂驱油体系的室内研究[J]. 石油与天然气化工, 2011,40(5):486-489.
|
|
LIU C, WANG Y F, YU H Y, et al. The laboratory study on surfactant flooding system for low permeable reservoir[J]. Chemical Engineering of Oil & Gas, 2011,40(5):486-489.
|
[14] |
赵光, 戴彩丽, 由庆. 冻胶分散体软体非均相复合驱油体系特征及驱替机理[J]. 石油勘探与开发, 2018,45(3):464-473.
|
|
ZHAO G, DAI C L, YOU Q. Characteristics and displacement mechanisms of the dispersed particle gel soft heterogeneous compound flooding system[J]. Petroleum Exploration and Development, 2018,45(3):464-473.
|
[15] |
王彦玲, 王刚霄, 李永飞, 等. 聚合物/表面活性剂复合体系在稠油油藏孔隙中的微观驱油过程[J]. 油田化学, 2018,35(4):686-690.
|
|
WANG Y L, WANG G X, LI Y F, et al. Micro-displacement process of surfactant/polymer system in heavy oil reservoir pores[J]. Oilfield Chemistry, 2018,35(4):686-690.
|
[16] |
吴鹏, 宋考平, 张跃, 等. 聚合物驱油体系高效络合剂研究[J]. 特种油气藏, 2020,27(1):114-120.
|
|
WU P, SONG K P, ZHANG Y, et al. High-efficiency complexing agent for polymer flooding system[J]. Special Oil & Gas Reservoirs, 2020,27(1):114-120.
|
[17] |
王鑫. 表面活性剂驱油技术提高采收率机理及影响因素分析[J]. 石油化工应用, 2019,38(3):5-8.
|
|
WANG X. Improve recovery by surfactant flooding technology and analyze its influencing factors[J]. Petrochemical Industry Application, 2019,38(3):5-8.
|
[18] |
AFSHARPOOR A, MA K, DUBOIN A, et al. Micro-scale experiment and CFD modeling of viscoelastic polymer: Trapped oil displacement and deformation at the dead-end[C]// paper SPE-169037-MS presented at SPE Improved Oil Recovery Symposium, 12-16 April, 2014, Tulsa, Oklahoma, USA.
|
[19] |
WANG Z H, LIU Y, LE X P, et al. The effects and control of viscosity loss of polymer solution compounded by produced water in oilfield development[J]. International Journal of Oil, Gas and Coal Technology, 2014,7(3):298-307.
|
[20] |
陈才, 卢祥国, 杨玉梅. 复配聚合物驱油效果及影响因素研究[J]. 特种油气藏, 2011,18(5):105-107.
|
|
CHEN C, LU X G, YANG Y M. Displacement characteristics and affecting factors of compound polymer flooding[J]. Special Oil & Gas Reservoirs, 2011,18(5):105-107.
|
[21] |
孙羽佳. 三元复合体系对不同润湿性简化孔隙中残余油的作用研究[D]. 大庆:东北石油大学, 2016.
|
|
SUN Y J. Research on the influence of ASP solution on the residual oil in simplified core with different wettability[D]. Daqing: Northeast Petroleum University, 2016.
|
[22] |
何更生, 唐海. 油层物理[M]. 北京: 石油工业出版社, 2011: 260.
|
|
HE G S, TANG H. Physics of Petroleum Reservoirs[M]. Beijing: Petroleum industry press, 2011: 260.
|