[1] |
Luo Z F, Zhang N L, Zhao L Q, et al. Thermoresponsive in situ generated proppant based on liquid-solid transition of a supramolecular self-propping fracturing fluid[J]. Energy & Fuels, 2019,33(11):10659-10666.
|
[2] |
Zhao L Q, Yang Y, Du G Y, et al. Phase-change fracturing fluid for phase change fracturing: US10364388B2[P]. 2019-07-30.
|
[3] |
Zhao L Q, Yang Y, Luo Z F, et al. Phase-change hydraulic fracturing process: US10301919B2[P]. 2019-05-28.
|
[4] |
杨勇, 赵立强, 余东合, 等. 一种相变水力压裂工艺:CN105971579B[P]. 2018-05-08.
|
|
Yang Yong, Zhao Liqiang, Yu Donghe, et al. A phase change hydraulic fracturing process: CN105971579b[P]. 2018-05-08.
|
[5] |
杜光焰, 杨勇, 赵立强, 等. 一种用于相变压裂的相变压裂液体系:CN106190086B[P]. 2019 -02-05.
|
|
Du Guangyan, Yang Yong, Zhao Liqiang, et al. A phase change fracturing fluid system for phase change fracturing: CN106190086b[P]. 2019-02-05
|
[6] |
陈一鑫. 一种新型自支撑压裂技术实验研究[D]. 成都:西南石油大学, 2017.
|
|
Chen Yixin. Experimental study on a new type of self supporting fracturing technology[D]. Chengdu: Southwest Petroleum University, 2017.
|
[7] |
Zhao L Q, Chen Y X, Du J, et al. Experimental study on a new type of self-propping fracturing technology[J]. Energy, 2019,183:249-261.
doi: 10.1016/j.energy.2019.06.137
|
[8] |
Dysart G R, Whitsitt N F. Fluid temperature in fractures[C]// paper SPE-1902-MS presented at the Fall Meeting of the Society of Petroleum Engineers of AIME, 1-4 October, 1967, New Orleans, Louisiana, USA.
|
[9] |
袁学浩, 姚艳斌, 甘泉, 等. TOUGH-FLAC3D热流固耦合模拟煤储层水力压裂过程[J]. 石油与天然气地质, 2018,39(3):611-619.
|
|
Yuan Xuehao, Yao Yanbin, Gan Quan, et al. Investigation of hydraulic fracturing process in coal reservoir by a coupled thermo-hydro-mechanical simulator TOUGH-FLAC3D[J]. Oil & Gas Geology, 2018,39(3):611-619.
|
[10] |
Wheeler J A. Analytical calculations for heat transfer from fractures[C]// paper SPE-2494-MS presented at the SPE Improved Oil Recovery Symposium, 13-15 April, 1969, Tulsa, Oklahoma, USA.
|
[11] |
Biot M A, Masse L, Medlin W L. Temperature analysis in hydraulic fracturing[J]. Journal of Petroleum Technology, 1987,39(11):1389-1397.
doi: 10.2118/13228-PA
|
[12] |
Kamphuis H, Davies D, Roodhart L. A new simulator for the calculation of the in situ temperature profile during well stimulation fracturing treatments[J]. Journal of Canadian Petroleum Technology, 1993,32(5):46-54.
|
[13] |
罗攀登, 李涵宇, 翟立军, 等. 塔河油田超临界CO2压裂井筒与裂缝温度场[J]. 断块油气田, 2019,26(2):225-230.
|
|
Luo Pandeng, Li Hanyu, Zhai Lijun, et al. Supercritical CO2 fracturing wellbore and fracture temperature field in Tahe Oilfield[J]. Fault-Block Oil & Gas Field, 2019,26(2):225-230.
|
[14] |
乔继彤, 张若京, 姚飞, 等. 水力压裂的二维温度场分析[J]. 同济大学学报(自然科学版), 2000,28(4):434-437.
|
|
Qiao Jitong, Zhang Ruojing, Yao Fei, et al. Study of two-dimensional temperature distribution in hydraulic fracturing[J]. Journal of Tongji University(Natural Science Edition), 2000,28(4):434-437.
|
[15] |
Kresse O, Weng X W, Cohen C E. Influence of fracturing fluid and reservoir temperature on production for complex hydraulic fracture network in shale gas reservoir[C]// paper SPE-167097-MS presented at the SPE Unconventional Resources Conference and Exhibition-Asia Pacific, 11-13 November, 2013, Brisbane, Australia.
|
[16] |
Sun Z X, Xin Y, Yao J, et al. Numerical investigation on the heat extraction capacity of dual horizontal wells in enhanced geothermal systems based on the 3-D THM model[J]. Energies, 2018,11(2):280.
doi: 10.3390/en11020280
|
[17] |
孙可明, 张宇. 缝网间距对高温岩体储留层温度影响规律模拟[J]. 吉林大学学报(地球科学版), 2019,49(6):1723-1731.
|
|
Sun Keming, Zhang Yu. Simulation of influence of fracture-network spacing on temperature of HDR geothermal reservoir[J]. Journal of Jilin University(Earth Science Edition), 2019,49(6):1723-1731.
|
[18] |
邢淦民. 基于流型的气液两相流管道振动机理研究[D]. 青岛:中国石油大学(华东), 2013.
|
|
Xing Ganmin. Research of vibration mechanism of pipeline conveying gas-liquid two-phase flow based on flow pattern[D]. Qingdao: China University of Petroleum(East China), 2013.
|
[19] |
薛衡, 黄祖熹, 赵立强, 等. 考虑岩矿非均质性的前置液酸压模拟研究[J]. 天然气工业, 2018,38(2):59-66.
|
|
Xue Heng, Huang Zuxi, Zhao Liqiang, et al. A simulation study on the preflush acid fracturing considering rock heterogeneity[J]. Natural Gas Industry, 2018,38(2):59-66.
|
[20] |
Palmer I D, Carroll H B. Three-dimensional hydraulic fracture propagation in the presence of stress variations[J]. Society of Petroleum Engineers Journal, 1983,23(6):870-878.
doi: 10.2118/10849-PA
|
[21] |
赵金洲, 李勇明, 王松, 等. 天然裂缝影响下的复杂压裂裂缝网络模拟[J]. 天然气工业, 2014,34(1):68-73.
|
|
Zhao Jinzhou, Li Yongming, Wang Song, et al. Simulation of complex fracture network influence by natural fracture[J]. Natural Gas Industry, 2014,34(1):68-73.
|
[22] |
鲜超. 自生固相化学压裂温度场模拟研究[D]. 成都:西南石油大学, 2018.
|
|
Xian Chao. Study on the temperature of self-generated solid phase chemical fracturing[D]. Chengdu: Southwest Petroleum University, 2018.
|
[23] |
王鸿勋, 张士诚. 水力压裂设计数值计算方法[M]. 北京: 石油工业出版社, 1998.
|
|
Wang Hongxun, Zhang Shicheng. Numerical calculation method of hydraulic fracturing design[M]. Beijing: Petroleum Industry Press, 1998.
|