油气藏评价与开发 ›› 2021, Vol. 11 ›› Issue (4): 577-585.doi: 10.13809/j.cnki.cn32-1825/te.2021.04.014

• 智能化评价 • 上一篇    下一篇

基于参数优选的储层渗透率深度置信网络模型预测初探

赵军1(),张涛1,何胜林2,张桓荣2,韩东1,汤翟2   

  1. 1.西南石油大学地球科学与技术学院,四川 成都 610500
    2.中海石油(中国)有限公司湛江分公司地质研究院,广东 湛江 524057
  • 收稿日期:2020-10-29 发布日期:2021-08-19 出版日期:2021-08-26
  • 作者简介:赵军(1970—),男,博士,教授,主要从事岩石物理及其解释与评价工作。地址:四川省成都市新都区新都大道8号,邮政编码:610500。E-mail: zhaojun_70@126.com
  • 基金资助:
    中海石油(中国)有限公司湛江分公司科技项目“文昌9、10区低孔低渗储层测井精细评价及潜力分析”(CCL2019ZJFN0823)

Prediction of reservoir permeability by deep belief network based on optimized parameters

ZHAO Jun1(),ZHANG Tao1,HE Shenglin2,ZHANG Huanrong2,HAN Dong1,TANG Di2   

  1. 1. School of Resources and Environment, Southwest Petroleum University, Chengdu, Sichuan 610500, China
    2. Research Institute of Zhanjiang Company, CNOOC, Zhanjiang, Guangdong 524057, China
  • Received:2020-10-29 Online:2021-08-19 Published:2021-08-26

摘要:

储层渗透率是储层产能的一个重要影响因素。针对常规测井渗透率模型在孔隙连通性差的低渗砂岩储层预测精度不高的问题,提出利用深度置信网络算法结合常规测井曲线预测储层渗透率的方法。该方法利用灰色关联法对测井曲线进行了关联度分析,依据相关度排序选取了特征敏感测井曲线,结合深度置信网络的有监督学习调优与对比散度算法进行数据挖掘,建立了渗透率的预测模型。该模型在以往BP神经网络的基础上改善了局部优化的问题,提高了网络模型的训练效率与预测精度。预测模型的平均相对误差为9.1 %,相比常规渗透率模型,降低了20 %左右。通过对实际资料的处理应用,结合误差分析,表明该方法能够有效地提高低渗透储层渗透率的预测精度。

关键词: 渗透率, 测井曲线, 灰色关联分析法, 深度置信网络, 预测

Abstract:

Reservoir permeability is an important factor affecting reservoir productivity. In order to solve the problem of poor prediction accuracy of conventional permeability logging models in low-permeability sandstone reservoirs with poor pore connectivity, a scheme combined with deep belief network(DBN) algorithm is proposed. First, the gray correlation method is used for the correlation analysis of logging curve, and according to the correlation ranking, the characteristic sensitive curves is sorted. Then, the optimization by supervised learning is combined with the contrastive divergence for the data mining to establish the prediction model of permeability. Compared to the previous BP neural network, DBN model improves the local optimization, and enhances the training efficiency and prediction accuracy. The average relative error of the prediction model is 9.1 %, which is about 20 % lower than that of the conventional permeability model. Based on the actual data processing applications and the error analysis, it is found that this method can effectively improve the prediction accuracy of permeability for the low permeability reservoirs.

Key words: permeability, logging curve, grey relational analysis, deep belief network, prediction

中图分类号: 

  • TE31