[1] |
赵久玉, 王付勇, 杨坤. 致密砂岩分形渗透率模型构建及关键分形参数计算方法[J]. 特种油气藏, 2020, 27(4):73-78.
|
|
ZHAO Jiuyu, WANG Fuyong, YANG Kun. Tight sandstone fractal permeability model and key fractal parameter calculation[J]. Special Oil & Gas Reservoirs, 2020, 27(4):73-78.
|
[2] |
程辉, 王付勇, 宰芸, 等. 基于高压压汞和核磁共振的致密砂岩渗透率预测[J]. 岩性油气藏, 2020, 32(3):122-132.
|
|
CHENG Hui, WANG Fuyong, ZAI Yun, et al. Prediction of tight sandstone permeability based on high-pressure mercury intrusion(HPMI)and nuclear magnetic resonance(NMR)[J]. Lithologic Reservoirs, 2020, 32(3):122-132.
|
[3] |
赵天逸, 宁正福, 陈刚, 等. 致密砂岩储集层渗透率预测修正方法[J]. 新疆石油地质, 2020, 41(3):337-343.
|
|
ZHAO Tianyi, NING Zhengfu, CHEN Gang, et al. Modified methods of permeability prediction for tight sandstone reservoirs[J]. Xinjiang Petroleum Geology, 2020, 41(3):337-343.
|
[4] |
张恒荣, 何胜林, 吴进波, 等. 一种基于Kozeny-Carmen方程改进的渗透率预测新方法[J]. 吉林大学学报(地球科学版), 2017, 47(3):899-906.
|
|
ZHANG Hengrong, HE Shenglin, WU Jinbo, et al. A new method for predicting permeability based on modified Kozeny-Carmen[J]. Journal of Jilin University(Earth Science Edition), 2017, 47(3):899-906.
|
[5] |
于华, 令狐松, 王谦, 等. 一种砂岩储层渗透率计算新方法[J]. 西南石油大学学报(自然科学版), 2020, 42(2):125-132.
|
|
YU Hua, LINGHU Song, WANG Qian, et al. A new method for calculating permeability of sandstone reservoir[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2020, 42(2):125-132.
|
[6] |
张冲. 基于海上砂砾岩低渗透率成因分析及测井评价[J]. 测井技术, 2019, 43(5):524-530.
|
|
ZHANG Chong. Log evaluation of offshore low permeability conglomerate based on permeability genesis analysis[J]. Well Logging Technology, 2019, 43(5):524-530.
|
[7] |
李奇, 高树生, 刘华勋, 等. 岩心渗透率的计算方法与适用范围[J]. 天然气工业, 2015, 35(3):68-73.
|
|
LI Qi, GAO Shusheng, LIU Huaxun, et al. Core permeability calculation methods and application scopes[J]. Natural Gas Industry, 2015, 35(3) : 68-73.
|
[8] |
毛志勇, 黄春娟, 路世昌, 等. 基于APSO-WLS-SVM的含瓦斯煤渗透率预测模型[J]. 煤田地质与勘探, 2019, 47(2):66-71.
|
|
MAO Zhiyong, HUANG Chunjuan, LU Shichang, et al. Model of gas-bearing coal permeability prediction based on APSO-WLS-SVM[J]. Coal Geology & Exploration, 2019, 47(2):66-71.
|
[9] |
邵良杉, 马寒. 煤体瓦斯渗透率的PSO-LSSVM预测模型[J]. 煤田地质与勘探, 2015, 43(4):23-26.
|
|
SHAO Liangshan, MA Han. Model of coal gas permeability prediction based on PSO-LSSVM[J]. Coal Geology & Exploration, 2015, 43(4):23-26.
|
[10] |
古勇. 基于改进支持向量机的煤体瓦斯渗透率预测[J]. 数学的实践与认识, 2016, 46(20):149-155.
|
|
GU Yong. Prediction of coal gas permeability based on PSOSVM[J]. Mathematics in Practice and Theory, 2016, 46(20):149-155.
|
[11] |
KABIRU O A, TAOREED O O, SUNDAY O O, et al. A hybrid particle swarm optimization and support vector regression model for modelling permeability prediction of hydrocarbon reservoir[J]. Journal of Petroleum Science and Engineering, 2017, 150(2):43-53.
doi: 10.1016/j.petrol.2016.11.033
|
[12] |
汪雷, 林亮, 李晶晶, 等. 基于测井信息的煤储层渗透率BP神经网络预测方法[J]. 煤炭科学技术, 2015, 43(7):122-126.
|
|
WANG Lei, LIN Liang, LI Jingjing, et al. Method to predict permeability of coal reservoir with bp neural network based on logging information[J]. Coal Science and Technology, 2015, 43(7):122-126.
|
[13] |
张言辉. 基于物性预测相对渗透率的改进神经网络方法[J]. 天然气与石油, 2020, 38(3):44-49.
|
|
ZHANG Yanhui. Improved neural network method for predicting relative permeability based on physical properties[J]. Natural Gas and Oil, 2020, 38(3):44-49.
|
[14] |
朱林奇, 张冲, 何小菊, 等. 基于改进BPNN与T2全谱的致密砂岩储层渗透率预测[J]. 石油物探, 2017, 56(5):727-734.
|
|
ZHU Linqi, ZHANG Chong, HE Xiaoju, et al. Permeability prediction of tight sandstone reservoir based on improved BPNN and T2 full-spectrum[J]. Geophysical Prospecting for Petroleum, 2017, 56(5):727-734.
|
[15] |
马晟翔, 李希建. 基于因子分析与BP神经网络的煤体瓦斯渗透率预测[J]. 煤矿开采, 2018, 23(6):108-111.
|
|
MA Shengxiang, LI Xijian. Forecast of coal body gas permeability based on factor analysis and BP neural net[J]. Coal Mining Technology, 2018, 23(6):108-111.
|
[16] |
BARAKA M N, CHUANNO S, SOLOMON A O, et al. Prediction of permeability using group method of data handling(GMDH) neural network from well log data[J]. Energies, 2020, 13(6):1-18.
doi: 10.3390/en13010001
|
[17] |
HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786):504-507.
doi: 10.1126/science.1127647
|
[18] |
王俊, 曹俊兴, 尤加春, 等. 基于门控循环单元神经网络的储层孔渗饱参数预测[J]. 石油物探, 2020, 59(4):616-627.
|
|
WANG Jun, CAO Junxing, YOU Jiachun, et al. Prediction of reservoir porosity permeability and saturation based on a gated recurrent unit neural network[J]. Geophysical Prospecting for Petroleum, 2020, 59(4):616-627.
|
[19] |
OLEG S, EVGENY B, DMITRY K. Driving digital rock towards machine learning: predicting permeability with gradient boosting and deep neural networks[J]. Computers and Geosciences, 2019, 127(6):91-98.
doi: 10.1016/j.cageo.2019.02.002
|
[20] |
JIAN W T, CHONG C Q, YING F S, et al. Surrogate permeability modelling of low permeable rocks using convolutional neural networks[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 366(13):103-113.
|
[21] |
王小艺, 李柳生, 孔建磊, 等. 基于深度置信网络-多类模糊支持向量机的粮食供应链危害物风险预警[J]. 食品科学, 2020, 41(19):17-24.
|
|
WANG Xiaoyi, LI Liusheng, KONG Jianlei, et al. Risk pre-warning of hazardous materials in cereal supply chain based on deep belief network-multiclass fuzzy support vector machine(DBN-MFSVM)[J]. Food Science, 2020, 41(19):17-24.
|
[22] |
孟智慧. 基于深度置信网络的互联网流量预测方法[J]. 电信工程技术与标准化, 2020, 33(10):42-47.
|
|
MENG Zhihui. Internet traffic prediction method based on deep belief network[J]. Telecom Engineering Technics and Standardization, 2020, 33(10):42-47.
|
[23] |
许若冰, 王璇, 赵倩宇, 等. 基于卷积神经网络和深度置信网络的多类型能源需求预测方法[J]. 供用电, 2020, 37(10):65-70.
|
|
XU Ruobing, WANG Xuan, ZHAO Qianyu, et al. A multi-energy demand prediction method based on convolutional neural network and deep belief network[J]. Distribution & Utilization, 2020, 37(10):65-70.
|
[24] |
叶绍泽, 曹俊兴, 吴施楷, 等. 基于深度置信网络的总有机碳含量预测方法[J]. 地球物理学进展, 2018, 33(6):2490-2497.
|
|
YE Shaoze, CAO Junxing, WU Shikai, et al. Prediction method of total organic carbon content based on deep belief nets[J]. Progress in Geophysics, 2018, 33(6):2490-2497.
|