[1] |
SONG C Y, YANG D Y. Experimental and numerical evaluation of CO2 huff-n-puff processes in Bakken formation[J]. Fuel, 2017, 190:145-162.
doi: 10.1016/j.fuel.2016.11.041
|
[2] |
Xu C F, Liu H X, Qian G B, et al. Microcosmic mechanisms of water-oil displacement in conglomerate reservoirs in Karamay Oilfield, NW China[J]. Petroleum Exploration and Development, 2011, 38(6):725-32.
doi: 10.1016/S1876-3804(12)60006-8
|
[3] |
林森虎, 邹才能, 袁选俊, 等. 美国致密油开发现状及启示[J]. 岩性油气藏, 2011, 23(4):25-32.
|
|
LIN Senhu, ZOU Caineng, YUAN Xuanjun, et al. Status quo of tight oil exploitation in the United States and its implication[J]. Lithologic Reservoirs, 2011, 23(4):25-32.
|
[4] |
DU D J, PU W F, JIN F Y, et al. Experimental study on EOR by CO2 huff-n-puff and CO2 flooding in tight conglomerate reservoirs with pore scale[J]. Chemical Engineering Research and Design, 2020, 156:425-432.
doi: 10.1016/j.cherd.2020.02.018
|
[5] |
MA J H, WANG X Z, GAO R M, et al. Enhanced light oil recovery from tight formations through CO2 huff ‘n’ puff processes[J]. Fuel, 2015, 154:35-44.
doi: 10.1016/j.fuel.2015.03.029
|
[6] |
LUO S, XU R N, JIANG P, et al. Visualization experimental investigations of supercritical CO2 inject into porous media with the fissure defect[J]. Energy Procedia, 2011, 4:4411-4417.
doi: 10.1016/j.egypro.2011.02.394
|
[7] |
战菲, 宋考平, 尚文涛, 等. 低渗透油藏单井CO2吞吐参数优选研究[J]. 特种油气藏, 2010, 17(5):70-72.
|
|
ZHAN Fei, SONG Kaiping, SHANG Wentao, et al. Parameter optimization of single well CO2 huff and puff for low permeability reservoir[J]. Special Oil & Gas Reservoirs, 2010, 17(5):70-72.
|
[8] |
马亮亮. CO2吞吐提高低渗透油藏采收率技术[J]. 大庆石油地质与开发, 2012, 31(4):144-148.
|
|
MA Liangliang. CO2 huff-and-puff EOR technique for low-permeability oil reservoir[J]. Petroleum Geology & Oilfield Development in Daqing, 2012, 31(4):144-148.
|
[9] |
赵继勇, 樊建明, 何永宏, 等. 超低渗—致密油藏水平井开发注采参数优化实践——以鄂尔多斯盆地长庆油田为例[J]. 石油勘探与开发, 2015, 42(1):68-75.
|
|
ZHAO Jiyong, FAN Jianming, HE Yonghong, et al. Optimization of horizontal well injection-production parameters for ultra-low permeable-tight oil production: A case from Changqing Oilfield, Ordos Basin[J]. Petroleum Exploration and Development, 2015, 42(1):68-75.
|
[10] |
谢灵. 致密油藏高效驱油体系优选实验研究——以吉木萨尔致密油为例[D]. 北京:中国石油大学(北京),2016.
|
|
XIE Ling. The optimization of enhancing oil recovery method for tight oil-a case of Jimusar tight oil reservoir[D]. Beijing: China University of Petroleum(Beijing), 2016.
|
[11] |
张越琪, 苟利鹏, 乔文波, 等. 致密油藏超临界二氧化碳吞吐开发特征实验研究[J]. 特种油气藏, 2021, 28(1):130-135.
|
|
ZHANG Yueqi, GOU Lipeng, QIAO Wenbo, et al. Experimental study on development characteristics of supercritical carbon dioxide huff and puff in tight reservoirs[J]. Special Oil & Gas Reservoirs, 2021, 28(1):130-135.
|
[12] |
贾瑞轩, 孙灵越, 苏致新, 等. 二氧化碳吞吐致密油藏的可动用性[J]. 断块油气藏, 2020, 27(4):504-508.
|
|
JIA Ruixuan, SUN Lingyue, SU Zhixin, et al. Availability of CO2 huff and puff in tight reservoir[J]. Fault-Block Oil & Gas Field, 2020, 27(4):504-508.
|
[13] |
邓宝康, 李军建, 高银山, 等. 鄂尔多斯盆地致密油藏注CO2吞吐微观剩余油分布特征[J]. 大庆石油地质与开发, 2020, 39(6):1-7.
|
|
DENG Baokang, LI Junjian, GAO Yinshan, WANG Xinxing, et al. Microscopic remained oil distribution characteristics of CO2 huff and puff in the tight oil reservoir in Ordos Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2020. 39:1-7.
|
[14] |
姜俊帅, 刘庆杰, 王家禄. 致密油藏二氧化碳吞吐有效作用半径计算方法[J]. 科学技术与工程, 2020, 20(6):2216-2222.
|
|
JIANG Junshuai, LIU Qingjie, WANG Jialu. Calculation method for effective radius of carbon dioxide huff and puff in tight reservoirs[J]. Science Technology and Engineering, 2020, 20(6):2216-2222.
|
[15] |
梅华. 致密油藏注 CO2提高采收率机理及数值模拟分析[J]. 化工管理, 2017(16):224-224.
|
|
MEI Hua. Mechanism and numerical simulation analysis of enhanced oil recovery by CO2 injection in tight reservoirs[J]. Chemical Enterprise Management, 2017(6):224-224.
|
[16] |
李龙龙, 景忠峰, 赵旭东, 等. Y油田长7致密油CO2吞吐效果认识[J]. 石油化工应用, 2018, 37(1):46-48.
|
|
LI Longlong, JING Zhongfeng, ZHAO Xudong, et al. Understanding of CO2 huff and puff effect of Chang 7 tight oil in Y oilfield[J]. Petrochemical Industry Application, 2018, 37(1):46-48.
|
[17] |
左翼. 致密油藏CO2吞吐适应性评价方法及参数优化研究[D]. 北京:中国石油大学(北京), 2018.
|
|
ZUO Yi. Study on adaptability evaluation method and optimization of CO2 huff-and-puff process in tight oil reservoirs[D]. Beijing: China University of Petroleum(Beijing), 2018.
|
[18] |
ZHANG X, WEI B, SHANG J, et al. Alterations of geochemical properties of a tight sandstone reservoir caused by supercritical CO2-brine-rock interactions in CO2-EOR and geosequestration[J]. Journal of CO2 Utilization, 2018, 28:408-418.
|
[19] |
WDOWIN M, TARKOWSKI R, FRANUS W. Determination of changes in the reservoir and cap rocks of the Chabowo Anticline caused by CO2-brine-rock interactions[J]. International journal of coal geology, 2014, 130:79-88.
doi: 10.1016/j.coal.2014.05.010
|
[20] |
ZOU Y S, LI S H, MA X F, et al. Effects of CO2-brine-rock interaction on porosity/permeability and mechanical properties during supercritical-CO2 fracturing in shale reservoirs[J]. Journal of Natural Gas Science and Engineering, 2018, 49:157-168.
doi: 10.1016/j.jngse.2017.11.004
|
[21] |
CHEN Y Q, AHMAD S, XIE Q, et al. Excess H+ increases hydrophilicity during CO2-assisted enhanced oil recovery in sandstone reservoirs[J]. Energy Fuels, 2019, 33(2):814-821.
doi: 10.1021/acs.energyfuels.8b03573
|
[22] |
CHEN Y Q, AHMAD S, XIE Q, et al. Insights into the wettability alteration of CO2-assisted EOR in carbonate reservoirs[J]. Journal of Molecular Liquids, 2019, 279:420-426.
doi: 10.1016/j.molliq.2019.01.112
|
[23] |
CHEN Y Q, XIE Q, PU W F, et al. Drivers of pH increase and implications for low salinity effect in sandstone[J]. Fuel, 2018, 218:112-117.
doi: 10.1016/j.fuel.2018.01.037
|