油气藏评价与开发 ›› 2021, Vol. 11 ›› Issue (6): 845-851.doi: 10.13809/j.cnki.cn32-1825/te.2021.06.007
户海胜1(),高阳1,单江涛1,雷现梅2,张玉龙3,张广超3,叶仲斌3
收稿日期:
2020-08-25
发布日期:
2021-12-31
出版日期:
2021-12-26
作者简介:
户海胜(1986—),男,硕士,工程师,从事油藏工程。地址:新疆克拉玛依市克拉玛依区准噶尔路32号,邮政编码:834000。E-mail: 基金资助:
HU Haisheng1(),GAO Yang1,SHAN Jiangtao1,LEI Xianmei2,ZHANG Yulong3,ZHANG Guangchao3,YE Zhongbin3
Received:
2020-08-25
Online:
2021-12-31
Published:
2021-12-26
摘要:
为提高致密砂砾岩油藏原油采收率,基于新疆玛湖致密砂砾岩油藏储层条件,通过利用超临界CO2萃取致密砂砾岩岩心中的致密油,采用单因素分析法依次对影响致密油萃取效果的压力(7~25 MPa)、温度(30~60oC)、浸泡时间(30~180 min)及循环时间(30~180 min),共4项生产参数进行了优化分析。结果表明:超临界CO2能够萃取出致密砂砾岩中原油且效果较好,萃取率最高可达25.22 %。通过对以上4项生产参数进行4因素3水平的正交设计实验L9(34),发现影响超临界CO2萃取原油效果的因素具有主次顺序:压力>浸泡时间>温度>循环时间。最优参数方案为:压力25 MPa,温度50oC,浸泡时间120 min,循环时间150 min。致密砂砾岩储层应用CO2萃取原油具有良好的应用前景。
中图分类号:
Haisheng HU,Yang GAO,Jiangtao SHAN, et al. Experimental researches on factors influencing supercritical CO2 extraction effect of crude oil from tight sandy conglomerate[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(6): 845-851.
表3
实验岩心参数"
岩心 编号 | 长度 (cm) | 直径 (cm) | 渗透率(10-3μm2) | 孔隙度(%) | M(g) |
---|---|---|---|---|---|
LY-19-7 | 7.904 | 2.514 | 0.072 | 6.12 | 87.632 |
LY-19-8 | 7.927 | 2.509 | 0.064 | 5.96 | 88.017 |
LY-19-9 | 7.858 | 2.516 | 0.057 | 5.71 | 88.236 |
LY-19-10 | 7.898 | 2.521 | 0.061 | 5.76 | 87.374 |
LY-19-11 | 7.919 | 2.519 | 0.058 | 5.66 | 86.925 |
LY-19-12 | 7.814 | 2.525 | 0.072 | 6.14 | 87.251 |
LY-19-13 | 7.848 | 2.505 | 0.068 | 5.98 | 88.226 |
表9
实验岩心参数"
岩心 编号 | 长度 (cm) | 直径 (cm) | 渗透率(10-3μm2) | 孔隙度 (%) |
---|---|---|---|---|
LY-19-26 | 7.900 | 2.544 | 0.058 | 5.96 |
LY-19-27 | 7.932 | 2.504 | 0.072 | 6.82 |
LY-19-28 | 7.890 | 2.488 | 0.083 | 7.11 |
LY-19-29 | 7.892 | 2.510 | 0.064 | 6.86 |
LY-19-30 | 7.848 | 2.496 | 0.068 | 6.42 |
LY-19-31 | 7.828 | 2.516 | 0.076 | 6.94 |
LY-19-32 | 7.786 | 2.532 | 0.064 | 6.12 |
LY-19-33 | 7.813 | 2.512 | 0.057 | 5.88 |
LY-19-34 | 7.806 | 2.530 | 0.066 | 6.33 |
表10
实验岩心原油萃取率"
岩心编号 | M(g) | M1(g) | M2(g) | 萃取率(%) |
---|---|---|---|---|
LY-19-26 | 88.214 | 89.520 | 89.270 | 19.14 |
LY-19-27 | 89.023 | 90.483 | 90.173 | 21.23 |
LY-19-28 | 88.861 | 90.303 | 89.981 | 22.33 |
LY-19-29 | 87.960 | 89.389 | 89.059 | 23.09 |
LY-19-30 | 86.859 | 88.140 | 87.819 | 25.06 |
LY-19-31 | 87.128 | 88.539 | 88.208 | 23.46 |
LY-19-32 | 88.362 | 89.643 | 89.319 | 25.29 |
LY-19-33 | 88.882 | 90.113 | 89.804 | 25.10 |
LY-19-34 | 87.772 | 89.092 | 88.765 | 24.77 |
[1] | 何云超, 张崇瑞. 新疆准噶尔盆地发现世界储量最大的砾岩油田[J]. 中国地质, 2017, 44(6):1174. |
HE Yunchao, ZHANG Chongrui. The world’s largest conglomerate oil field discovered in Junggar Basin, Xinjiang[J]. Geology in China, 2017, 44(6):1174. | |
[2] | 高嘉. 油藏二氧化碳驱提高采收率及埋存技术[J]. 中国石油石化, 2017, 15(5):29-30. |
GAO Jia. Enhanced oil recovery and storage technology by CO2 flooding in reservoir[J]. China Petrochem, 2017, 15(5):29-30. | |
[3] | 杨铁军, 张英芝, 杨正明, 等. 致密砂岩油藏CO2驱油提高采收率机理[J]. 科学技术与工程, 2019, 19(24):113-118. |
YANG Tiejun, ZHANG Yingzhi, YANG Zhengming, et al. Mechanism of enhanced oil recovery by CO2 flooding in tight sandstone reservoirs[J]. Science Technology and Engineering, 2019, 19(24):113-118. | |
[4] | 白玉彬, 罗静兰, 王少飞, 等. 鄂尔多斯盆地吴堡地区延长组长8致密砂岩油藏成藏主控因素[J]. 中国地质, 2013, 40(4):1159-1168. |
BAI Yubin, LUO Jinglan, WANG Shaofei, et al. The distribution of chang-8 tight sandstone oil reservoir of yanchang formation in wubao area, central-south of ordos basin[J]. Geology in China, 2013, 40(4):1159-1168. | |
[5] |
TANG M M, ZHAO H Y, MA H F, et al. Study on CO2 huff-n-puff of horizontal wells in continental tight oil reservoirs[J]. Fuel, 2017, 188:140-154.
doi: 10.1016/j.fuel.2016.10.027 |
[6] | ZHANG X, WEI B, SHANG J, et al. Alterations of geochemical properties of a tight sandstone reservoir caused by supercritical CO2-brine-rock interactions in CO2-EOR and geosequestration[J]. Journal of CO2 Utilization, 2018, 28:408-418. |
[7] | 许琳, 常秋生, 冯玲丽, 等. 准噶尔盆地玛湖凹陷二叠系风城组页岩油储层特征及控制因素[J]. 中国石油勘探, 2019, 24(5):649-660. |
XU Lin, CHANG Qiusheng, FENG Lingli, et al. The reservoir characteristics and control factors of shale oil in Permian Fengcheng Formation of Mahu sag, Junggar Basin[J]. China Petroleum Exploration, 2019, 24(5):649-660. | |
[8] | 李孟涛, 单文文, 刘先贵, 等. 超临界二氧化碳混相驱油机理实验研究[J]. 石油学报, 2006, 27(3):80-83. |
LI Mengtao, SHAN Wenwen, LIU Xiangui, et al. Laboratory study on miscible oil displacement mechanism of supercritical carbon dioxide[J]. Acta Petrolei Sinica, 2006, 27(3):80-83. | |
[9] | 王强, 李志明, 钱门辉, 等. 超临界二氧化碳萃取泥页岩中可动油实验研究[J]. 石油实验地质, 2020, 42(4):646-652. |
WANG Qiang, LI Zhiming, QIAN Menhui, et al. Movable oil extraction from shale with supercritical carbon dioxide[J]. Petroleum Geology and Experiment, 2020, 42(4):646-652. | |
[10] |
PENG X Y, WENG Y Y, DIAO Y Q, et al. Experimental investigation on the operation parameters of carbon dioxide huff-n-puff process in ultra low permeability oil reservoirs[J]. Journal of Petroleum Science and Engineering, 2019, 174:903-912.
doi: 10.1016/j.petrol.2018.11.073 |
[11] | 马铨峥, 杨胜来, 陈浩, 等. 致密油储集层CO2吞吐效果及影响因素分析——以新疆吉木萨尔凹陷芦草沟组为例[J]. 石油科学通报, 2018, 3(4):434-445. |
MA Quanzheng, YANG Shenglai, CHEN hao, et al. Effect and influencing factors of CO2 huff and puff in a tight oil reservoir——Taking the Lucaogou formation in the Xinjiang Jimsar sag as an example[J]. Petroleum Science Bulletin, 2018, 3(4):434-445. | |
[12] | 杨胜来, 杭达震, 孙蓉, 等. CO2对原油的抽提及其对原油黏度的影响[J]. 中国石油大学学报:自然科学版, 2009, 1(4):85-88. |
YANG Shenglai, HANG Dazheng, SUN Rong, et al. CO2 extraction for crude oil and its effect on crude oil viscosity[J]. Journal of China University of Petroleum, 2009, 1(4):85-88. | |
[13] | 王鉴, 张楠, 武芹, 等. 超临界CO2溶解性能的研究进展[J]. 炼油与化工, 2011, 22(5):1-5. |
WANG Jian, ZHANG Nan, WU Qin, et al. Research progress on the solubility of supercritical CO2[J]. Refining and Chemical Industry, 2011, 22(5):1-5. | |
[14] | 张航国. 金南油田致密油藏CO2提高采收率物理模拟研究[J]. 石化技术, 2018, 25(4):269-270. |
ZHANG Hangguo. Physical simulation of CO2 enhanced oil recovery in Jinnan oil field[J]. Petrochemical Technology, 2018, 25(4):269-270. | |
[15] | 施雷庭, 张玉龙, 户海胜, 等. 砂砾岩致密油藏超临界二氧化碳吞吐适应性分析[J]. 科学技术与工程, 2020, 20(9):3598-3604. |
SHI Leiting, ZHANG Yulong, HU Haisheng, et al. Adaptability Analysis of Supercritical CO2 Huff and Puff in Tight Glutenite Reservoir[J]. Science Technology and Engineering, 2020, 20(9):3598-3604. | |
[16] | 王涛, 姚约东, 李相方, 等. 二氧化碳驱油效果影响因素与分析[J]. 中国石油和化工, 2008, 15(24):30-33. |
WANG Tao, YAO Yuedong, LI Xiangfang, et al. Influencing factors and analysis of carbon dioxide flooding effect[J]. Petroleum Engineering Technology, 2008, 15(24):30-33. | |
[17] | 梁宏儒, 薛海涛, 卢双舫, 等. 致密油藏水平井水力压裂CO2吞吐参数优化[J]. 大庆石油地质与开发, 2016, 35(4):161-167. |
LIANG Hongru, XUE Haitao, LU Shuangfang, et al. Parameters optimization of hydro-fractured CO2 huff-puff horizontal well in the tight oil reservoir[J]. Petroleum Geology and Oilfield Development in Daqing, 2016, 35(4):161-167. | |
[18] |
LINDEBERG E, GRIMSTAD A, BERGMO P, et al. Large scale tertiary CO2 EOR in mature water flooded norwegian oil fields[J]. Energy Procedia, 2017, 114:7096-7106.
doi: 10.1016/j.egypro.2017.03.1851 |
[19] |
SUN R X, YU W, XU F, et al. Compositional simulation of CO2 huff-n-puff process in Middle Bakken tight oil reservoirs with hydraulic fractures[J]. Fuel, 2019, 236:1446-1457.
doi: 10.1016/j.fuel.2018.09.113 |
[20] | 周拓, 刘学伟, 王艳丽, 等. 致密油藏水平井分段压裂CO2吞吐实验研究[J]. 西南石油大学学报:自然科学版, 2017, 39(2):125-131. |
ZHOU Tuo, LIU Xuewei, WANG Yanli, et al. Experiments of CO2 huff-n-puff process in staged fracturing horizontal wells for developing tight oil reservoirs[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2017, 39(2):125-131. | |
[21] |
SONG C Y, YANG D Y. Experimental and numerical evaluation of CO2 huff-n-puff processes in Bakken formation[J]. Fuel, 2017, 190:145-162.
doi: 10.1016/j.fuel.2016.11.041 |
[22] | 王高峰, 孙蓉, 鞠玮艳, 等. 低渗透油藏气驱注采压力系统诊断模型[J]. 科学技术与工程, 2019, 18(20):96-101. |
WANG Gaofeng, SUN Rong, JU Weiyan, et al. Diagnosis of injection-production pressure system in gas flooding tight reservoirs[J]. Science Technology and Engineering, 2019, 18(20):96-101. | |
[23] |
REN B, DUNCAN I J. Reservoir simulation of carbon storage associated with CO2 EOR in residual oil zones, San Andres formation of West Texas, Permian Basin, USA[J]. Energy, 2019, 167:391-401.
doi: 10.1016/j.energy.2018.11.007 |
[1] | 刘巍, 曹小朋, 胡慧芳, 程紫燕, 卜亚辉. 页岩油水平井产量影响因素分析及压裂参数优化决策 [J]. 油气藏评价与开发, 2024, 14(5): 764-770. |
[2] | 张志超,柏明星,杜思宇. 页岩油藏注CO2驱孔隙动用特征研究 [J]. 油气藏评价与开发, 2024, 14(1): 42-47. |
[3] | 李颖, 马寒松, 李海涛, GANZER Leonhard, 唐政, 李可, 罗红文. 超临界CO2对碳酸盐岩储层的溶蚀作用研究 [J]. 油气藏评价与开发, 2023, 13(3): 288-295. |
[4] | 裴秀玲, 李嘉琪, 马旭飞, 张爱祥, 张蕾蕾, 卢祥国, 何欣. 大庆厚油层内各结构单元分流率变化特征实验研究 [J]. 油气藏评价与开发, 2023, 13(2): 233-239. |
[5] | 胡德鹏. 水平井聚合物驱注采特征及井组效果影响因素分析 [J]. 油气藏评价与开发, 2022, 12(5): 809-815. |
[6] | 李东晖,田玲钰,聂海宽,彭泽阳. 基于模糊层次分析法的页岩气井产能影响因素分析及综合评价模型——以四川盆地焦石坝页岩气田为例 [J]. 油气藏评价与开发, 2022, 12(3): 417-428. |
[7] | 王英伟,伍顺伟,覃建华,叶义平,高阳,张景. 超临界CO2浸泡对玛湖不同黏土矿物含量砂砾岩储层渗透率影响 [J]. 油气藏评价与开发, 2021, 11(6): 837-844. |
[8] | 陈世杰,潘毅,孙雷,司勇,梁飞,高丽. 低渗高凝油藏CO2复合驱提高采收率机理实验研究 [J]. 油气藏评价与开发, 2021, 11(6): 823-830. |
[9] | 刘博,张荣达,张伊琳,卢云霞,汪婷. 双河油田高耗水条带影响因素及治理对策可行性研究 [J]. 油气藏评价与开发, 2020, 10(6): 96-102. |
[10] | 刘学利,郑小杰,谭涛,窦莲,谢爽. 塔河强底水砂岩油藏CO2驱机理实验研究 [J]. 油气藏评价与开发, 2020, 10(6): 115-120. |
[11] | 刘鹏刚,孙天礼,陈伟,侯肖智,黄元和,朱国,何海,房斌. 元坝气田含硫污水负压汽提脱硫工艺影响因素分析与优化 [J]. 油气藏评价与开发, 2020, 10(4): 125-129. |
[12] | 李士伦,孙雷,陈祖华,李健,汤勇,潘毅. 再论CO2驱提高采收率油藏工程理念和开发模式的发展 [J]. 油气藏评价与开发, 2020, 10(3): 1-14. |
[13] | 任建华,卢比,任韶然. 改进的压力衰竭法测试页岩孔渗参数 [J]. 油气藏评价与开发, 2020, 10(1): 49-55. |
[14] | 齐桂雪. CO2萃取作用对最小混相压力的影响实验研究 [J]. 油气藏评价与开发, 2019, 9(6): 51-55. |
[15] | 施雷庭,朱诗杰,马杰,杨梅,彭洋平,叶仲斌. 超临界CO2萃取致密油的数值模拟研究 [J]. 油气藏评价与开发, 2019, 9(3): 25-31. |
|