[1] |
邹才能, 董大忠, 王社教, 等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发, 2010, 37(6):641-653.
doi: 10.1016/S1876-3804(11)60001-3
|
|
ZOU Caineng, DONG Dazhong, WANG Shejiao, et al. Geological characteristics, formation mechanism and resource potential of shale gas in China[J]. Petroleum Exploration and Development, 2010, 37(6): 641-653.
doi: 10.1016/S1876-3804(11)60001-3
|
[2] |
郭旭升, 胡东风, 文治东, 等. 四川盆地及周缘下古生界海相页岩气富集高产主控因素——以焦石坝地区五峰组—龙马溪组为例[J]. 中国地质, 2014, 41(3):893-901.
|
|
GUO Xusheng, HU Dongfeng, WEN Zhidong, et al. Major factors controlling the accumulation and high productivity in marine shale gas in the Lower Paleozoic of Sichuan Basin and its periphery: A case study of the Wufeng-Longmaxi Formation of Jiaoshiba area[J]. Geology in China, 2014, 41(3): 893-901.
|
[3] |
张金川, 金之钧, 袁明生. 页岩气成藏机理和分布[J]. 天然气工业, 2004, 24(7):15-18.
|
|
ZHANG Jinchuan, JIN Zhiyun, YUAN Mingsheng. Reservoiring mechanism of shale gas and its distribution[J]. Natural Gas Industry, 2004, 24(7): 15-18.
|
[4] |
LIU Z S, LIU D M, CAI Y D, et al. Application of nuclear magnetic resonance (NMR) in coalbed methane and shale reservoirs: A review[J]. International Journal of Coal Geology, 2020, 218: 103261.
doi: 10.1016/j.coal.2019.103261
|
[5] |
姚艳斌, 刘大锰. 基于核磁共振弛豫谱技术的页岩储层物性与流体特征研究[J]. 煤炭学报, 2018, 43(1):181-189.
|
|
YAO Yanbin, LIU Dameng. Petrophysical properties and fluids transportation in gas shale: A NMR relaxation spectrum analysis method[J]. Journal of China Coal Society, 2018, 43(1): 181-189.
|
[6] |
王琨, 周航宇, 赖杰, 等. 核磁共振技术在岩石物理与孔隙结构表征中的应用[J]. 仪器仪表学报, 2020, 41(2):101-114.
|
|
WANG Kun, ZHOU Hangyu, LAI Jie, et al. Application of NMR technology in characterization of petrophysics and pore structure[J]. Chinese Journal of Scientific Instrument, 2020, 41(2): 101-114.
|
[7] |
焦堃, 姚素平, 吴浩, 等. 页岩气储层孔隙系统表征方法研究进展[J]. 高校地质学报, 2014, 20(1):151-161.
|
|
JIAO Kun, YAO Suping, WU Hao, et al. Advances in characterization of pore system of gas shales[J]. Geological Journal of China Universities, 2014, 20(1): 151-161.
|
[8] |
YAO Y B, LIU D M. Comparison of low-field NMR and mercury intrusion porosimetry in characterizing pore size distributions of coals[J]. Fuel, 2012, 95(1): 152-158.
doi: 10.1016/j.fuel.2011.12.039
|
[9] |
张琴, 刘畅, 梅啸寒, 等. 页岩气储层微观储集空间研究现状及展望[J]. 石油与天然气地质, 2015, 36(4):666-674.
|
|
ZHANG Qin, LIU Chang, MEI Xiaohan, et al. Status and prospect of research on microscopic shale gas reservoir space[J]. Oil & Gas Geology, 2015, 36(4): 666-674.
|
[10] |
LI A, DING W L, WANG R Y, et al. Petrophysical characterization of shale reservoir based on nuclear magnetic resonance (NMR) experiment: A case study of Lower Cambrian Qiongzhusi Formation in eastern Yunnan Province, South China[J]. Journal of Natural Gas Science & Engineering, 2016, 37: 29-38.
|
[11] |
STRALEY C, ROSSINI D, VINEGAR H, et al. Core analysis by low-field NMR[J]. Log Analyst, 1997, 38(2): 84-93.
|
[12] |
白松涛, 程道解, 万金彬, 等. 砂岩岩石核磁共振T2谱定量表征[J]. 石油学报, 2016, 37(3):382-391.
|
|
BAI Songtao, CHENG Daojie, WAN Jinbin, et al. Quantitative characterization of sandstone NMR T2 spectrum[J]. Acta Petrolei Sinica, 2016, 37(3): 382-391.
|
[13] |
谭茂金, 赵文杰. 用核磁共振测井资料评价碳酸盐岩等复杂岩性储集层[J]. 地球物理学进展, 2006, 21(2):489-493.
|
|
TAN Maojin, ZHAO Wenjie. Description of carbonate reservoirs with NMR log analysis method[J]. Progress in Geophysics, 2006, 21(2): 489-493.
|
[14] |
YAO Y, LIU D, CHE Y, et al. Petrophysical characterization of coals by low-field nuclear magnetic resonance(NMR)[J]. Fuel, 2010, 89(7): 1371-1380.
doi: 10.1016/j.fuel.2009.11.005
|
[15] |
薛晓辉, 叶建国. 核磁共振技术在煤层气勘探中的应用[J]. 油气藏评价与开发, 2013, 3(1):72-74.
|
|
XUE Xiaohui, YE Jianguo. Application of NMR techniques in CBM exploration[J]. Reservoir Evaluation and Development, 2013, 3(1): 72-74.
|
[16] |
周尚文, 刘洪林, 闫刚, 等. 中国南方海相页岩储层可动流体及T2截止值核磁共振研究[J]. 石油与天然气地质, 2016, 37(4):612-616.
|
|
ZHOU Shangwen, LIU Honglin, YAN Gang, et al. NMR research of movable fluid and T2 cutoff of marine shale in South China[J]. Oil & Gas Geology, 2016, 37(4): 612-616.
|
[17] |
蒋裕强, 刘雄伟, 付永红, 等. 渝西地区海相页岩储层孔隙有效性评价[J]. 石油学报, 2019, 40(10):1233-1243.
|
|
JIANG Yuqiang, LIU Xiongwei, FU Yonghong, et al. Evaluation of effective porosity in marine shale reservoir, western Chongqing[J]. Acta Petrolei Sinica, 2019, 40(10): 1233-1243.
|
[18] |
任延广, 朱德丰, 万传彪, 等. 松辽盆地北部深层地质特征与天然气勘探方向[J]. 中国石油勘探, 2004, 9(4):12-18.
|
|
REN Yanguang, ZHU Defeng, WAN Chuanbiao, et al. Deep geological characteristics and natural gas exploration direction in northern Songliao Basin[J]. China Petroleum Exploration, 2004, 9(4): 12-18.
|
[19] |
李楚雄, 申宝剑, 潘安阳, 等. 波罗的海盆地上奥陶统页岩孔隙演化的热压模拟实验[J]. 石油实验地质, 2020, 42(3):434-442.
|
|
LI Chuxiong, SHEN Baojian, PAN Anyang, et al. Thermal-pressure simulation experiment of pore evolution of Upper Ordovician shale in Baltic Basin[J]. Petroleum Geology & Experiment, 2020, 42(3): 434-442.
|
[20] |
任晓娟. 低渗砂岩储层孔隙结构与流体微观渗流特征研究[D]. 西安: 西北大学, 2006.
|
|
REN Xiaojuan. Pore structure of low permeability sand rock and fluid flowing characteristics[D]. Xi'an: Northwest University, 2006.
|
[21] |
范宜仁, 刘建宇, 葛新民, 等. 基于核磁共振双截止值的致密砂岩渗透率评价新方法[J]. 地球物理学报, 2018, 61(4)1628-1638.
|
|
FAN Yiren, LIU Jianyu, GE Xinmin, et al. Permeability evaluation of tight sandstone based on dual T2 cutoff values measured by NMR[J]. Chinese Journal of geophysics, 2018, 61(4): 1628-1638.
|
[22] |
梁志凯, 李卓, 姜振学, 等. 基于NMR和SEM技术研究陆相页岩孔隙结构与分形维数特征——以松辽盆地长岭断陷沙河子组页岩为例[J]. 地球科学与环境学报, 2020, 42(3):313-328.
|
|
LIANG Zhikai, LI Zhuo, JIANG Zhenxue, et al. Characteristics of pore structure and fractal dimension in continental shale based on NMR experiment and SEM image analyses: A case study of Shahezi Formation Shale in Changling Fault Depression of Songliao Basin, China[J]. Journal of Earth Sciences and Environment, 2020, 42(3): 313-328.
|
[23] |
王赞惟. 鄂尔多斯盆地东缘临兴地区盒8段储层微观孔隙结构及渗流特征[J]. 非常规油气, 2020, 7(1):59-64.
|
|
WANG Zanwei. Microscopic Pore Structure and the Seepage Characteristics in Tight Sandstone Reservoir of the 8th Member of Lower Shihezi Formation in Linxing Area of East Ordos Basin[J]. Unconventional Oil & Gas, 2020, 7(1): 59-64.
|
[24] |
COATES G R, XIAO L Z, PRAMMER M G. NMR logging principles and applications[M]. Houston: Gulf Publishing Company, 1999.
|
[25] |
LIU Y, YAO Y B, LIU D M, et al. Shale pore size classification: An NMR fluid typing method[J]. Marine and Petroleum Geology, 2018: 591-601.
|
[26] |
KHATIBI S, OSTADHASSAN M, XIE Z H, et al. NMR relaxometry a new approach to detect geochemical properties of organic matter in tight shales[J]. Fuel, 2019, 235: 167-177.
doi: 10.1016/j.fuel.2018.07.100
|
[27] |
SONDERGELD C H, AMBROSE R J, RAI C S, et al. Microstructural studies of gas shales[C]// Paper SPE-131771-MS presented at the SPE Unconventional Gas Conference, Pittsburgh, Pennsylvania, USA, February 2010.
|
[28] |
CURTIS J B. Fractured shale-gas system[J]. AAPG Bulletin, 2002, 86(11): 1921-1938.
|
[29] |
焦淑静, 张慧, 薛东川, 等. 泥页岩有机显微组分的扫描电镜形貌特征及识别方法[J]. 电子显微学报, 2018, 37(2):137-144.
|
|
JIAO Shujing, ZHANG Hui, XUE Dongchuan, et al. Morphological structure and identify method of organic macerals of shale with SEM[J]. Journal of Chinese Electron Microscopy Society, 2018, 37(2): 137-144.
|
[30] |
LOUCKS R G, REED R M, RUPPEL S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96: 1071-1098.
doi: 10.1306/08171111061
|
[31] |
汤克轩, 李俊丽, 李振宇, 等. 顺磁性物质对冻土核磁共振信号的影响[J]. 物探与化探, 2017, 41(6):1268-1274.
|
|
TANG Kexuan, LI Junli, LI Zhenyu, et al. A study of the influence of paramagnetic material on the signal of NMR[J]. Geophysical & Geochemical Exploration, 2017, 41(6): 1268-1274.
|