油气藏评价与开发 ›› 2022, Vol. 12 ›› Issue (3): 468-476.doi: 10.13809/j.cnki.cn32-1825/te.2022.03.009
李楚雄1,2(),申宝剑1,2,卢龙飞1,2,蒋启贵1,2,潘安阳1,2,陶金雨1,2,丁江辉1,2
收稿日期:
2020-11-03
出版日期:
2022-06-26
发布日期:
2022-06-24
作者简介:
李楚雄(1992—),男,硕士,助理研究员,从事非常规石油地质研究。地址:江苏省无锡市蠡湖大道2060号无锡石油地质研究所,邮政编码:214126。E-mail: 基金资助:
LI Chuxiong1,2(),SHEN Baojian1,2,LU Longfei1,2,JIANG Qigui1,2,PAN Anyang1,2,TAO Jinyu1,2,DING Jianghui1,2
Received:
2020-11-03
Online:
2022-06-26
Published:
2022-06-24
摘要:
为了表征松辽盆地沙河子组页岩微观孔隙结构,选取沙河子组9个页岩样品开展了饱和与干燥状态下的核磁共振T2测试,同步进行了岩石物性测试和场发射扫描电镜观察,系统分析了核磁共振T2弛豫特征,孔隙类型与分布特征,对比了核磁孔隙度与气测法孔隙度的差异。结果表明:沙河子组页岩样品的核磁共振T2谱以单峰型为主,弛豫时间较短,孔隙直径主要分布在10~1 000 nm;孔隙类型以纳米级无机孔为主,有机孔和微裂缝相对不发育;扣除基底信号后计算的核磁共振孔隙度分布在0.68 %~3.66 %,与He(氦)孔隙度具有较好的匹配关系;孔隙度较小的样品更容易受岩石基质背景信号影响而造成测试结果的相对误差。总体认为,核磁共振技术能够准确分析低孔、低渗页岩样品的孔隙度和孔径分布,但需要注意页岩中有机质和黏土矿物束缚水产生的核磁信号干扰。
中图分类号:
李楚雄,申宝剑,卢龙飞,蒋启贵,潘安阳,陶金雨,丁江辉. 松辽盆地沙河子组页岩孔隙结构表征——基于低场核磁共振技术[J]. 油气藏评价与开发, 2022, 12(3): 468-476.
LI Chuxiong,SHEN Baojian,LU Longfei,JIANG Qigui,PAN Anyang,TAO Jinyu,DING Jianghui. Pore structure characterization of Shahezi Formation shale in Songliao Basin: Based on low-field nuclear magnetic resonance technology[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(3): 468-476.
表1
沙河子组页岩TOC和岩石物性参数"
样品号 | 层位 | 深度(m) | 岩性 | 岩石密度(g/cm3) | TOC(%) | He孔隙度(%) | 基质渗透率(10-3 μm2) |
---|---|---|---|---|---|---|---|
SHZ-1 | 沙河子组 | 4 545.8 | 黑灰色页岩 | 2.63 | 1.66 | 2.3 | 0.006 7 |
SHZ-2 | 沙河子组 | 4 647.9 | 黑灰色页岩 | 2.62 | 2.72 | 2.0 | 0.003 6 |
SHZ-3 | 沙河子组 | 4 727.7 | 黑灰色页岩 | 2.63 | 1.54 | 2.4 | 0.021 9 |
SHZ-4 | 沙河子组 | 4 845.9 | 黑灰色页岩 | 2.58 | 1.85 | 3.4 | 0.036 4 |
SHZ-5 | 沙河子组 | 4 944.5 | 黑灰色页岩 | 2.66 | 1.61 | 1.5 | 0.004 1 |
SHZ-6 | 沙河子组 | 5 091.6 | 黑灰色页岩 | 2.65 | 2.17 | 1.1 | 0.000 8 |
SHZ-7 | 沙河子组 | 5 188.4 | 深灰色页岩 | 2.63 | 0.92 | 1.6 | 0.039 1 |
SHZ-8 | 沙河子组 | 5 278.0 | 深灰色页岩 | 2.65 | 1.45 | 1.1 | 0.017 8 |
SHZ-9 | 沙河子组 | 5 345.4 | 深灰色页岩 | 2.69 | 1.21 | 0.7 | 0.007 3 |
图5
沙河子组页岩扫描电镜图片 注:a.有机质,可能为无结构镜质体,边缘发育少量的有机质粒缘缝(黄色箭头),二次电子像(SHZ-4,TOC=1.85 %);b. 有机质,可能为结构镜质体,具有纤维状结构,二次电子像(SHZ-4,TOC=1.85 %);c. 有机质,可能为固体沥青,具有填隙状结构,二次电子像(SHZ-4,TOC=1.85 %);d. 有机质—黏土矿物集合体,发育粒间孔(黄色箭头),背散射电子像(SHZ-4,TOC=1.85 %);e. 黄铁矿粒间孔(黄色箭头),二次电子像(SHZ-5,TOC=1.61 %);f. 黏土矿物层间孔(黄色箭头),二次电子像(SHZ-5,TOC=1.61 %);g. 黏土矿物层间孔,二次电子像(SHZ-5,TOC=1.61 %);h. 长石颗粒,粒内孔发育,二次电子像(SHZ-6,TOC=2.17 %);i. 图h局部放大,星点状粒内孔密集分布(黄色箭头),二次电子像(SHZ-6,TOC=2.17 %)。"
[1] |
邹才能, 董大忠, 王社教, 等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发, 2010, 37(6):641-653.
doi: 10.1016/S1876-3804(11)60001-3 |
ZOU Caineng, DONG Dazhong, WANG Shejiao, et al. Geological characteristics, formation mechanism and resource potential of shale gas in China[J]. Petroleum Exploration and Development, 2010, 37(6): 641-653.
doi: 10.1016/S1876-3804(11)60001-3 |
|
[2] | 郭旭升, 胡东风, 文治东, 等. 四川盆地及周缘下古生界海相页岩气富集高产主控因素——以焦石坝地区五峰组—龙马溪组为例[J]. 中国地质, 2014, 41(3):893-901. |
GUO Xusheng, HU Dongfeng, WEN Zhidong, et al. Major factors controlling the accumulation and high productivity in marine shale gas in the Lower Paleozoic of Sichuan Basin and its periphery: A case study of the Wufeng-Longmaxi Formation of Jiaoshiba area[J]. Geology in China, 2014, 41(3): 893-901. | |
[3] | 张金川, 金之钧, 袁明生. 页岩气成藏机理和分布[J]. 天然气工业, 2004, 24(7):15-18. |
ZHANG Jinchuan, JIN Zhiyun, YUAN Mingsheng. Reservoiring mechanism of shale gas and its distribution[J]. Natural Gas Industry, 2004, 24(7): 15-18. | |
[4] |
LIU Z S, LIU D M, CAI Y D, et al. Application of nuclear magnetic resonance (NMR) in coalbed methane and shale reservoirs: A review[J]. International Journal of Coal Geology, 2020, 218: 103261.
doi: 10.1016/j.coal.2019.103261 |
[5] | 姚艳斌, 刘大锰. 基于核磁共振弛豫谱技术的页岩储层物性与流体特征研究[J]. 煤炭学报, 2018, 43(1):181-189. |
YAO Yanbin, LIU Dameng. Petrophysical properties and fluids transportation in gas shale: A NMR relaxation spectrum analysis method[J]. Journal of China Coal Society, 2018, 43(1): 181-189. | |
[6] | 王琨, 周航宇, 赖杰, 等. 核磁共振技术在岩石物理与孔隙结构表征中的应用[J]. 仪器仪表学报, 2020, 41(2):101-114. |
WANG Kun, ZHOU Hangyu, LAI Jie, et al. Application of NMR technology in characterization of petrophysics and pore structure[J]. Chinese Journal of Scientific Instrument, 2020, 41(2): 101-114. | |
[7] | 焦堃, 姚素平, 吴浩, 等. 页岩气储层孔隙系统表征方法研究进展[J]. 高校地质学报, 2014, 20(1):151-161. |
JIAO Kun, YAO Suping, WU Hao, et al. Advances in characterization of pore system of gas shales[J]. Geological Journal of China Universities, 2014, 20(1): 151-161. | |
[8] |
YAO Y B, LIU D M. Comparison of low-field NMR and mercury intrusion porosimetry in characterizing pore size distributions of coals[J]. Fuel, 2012, 95(1): 152-158.
doi: 10.1016/j.fuel.2011.12.039 |
[9] | 张琴, 刘畅, 梅啸寒, 等. 页岩气储层微观储集空间研究现状及展望[J]. 石油与天然气地质, 2015, 36(4):666-674. |
ZHANG Qin, LIU Chang, MEI Xiaohan, et al. Status and prospect of research on microscopic shale gas reservoir space[J]. Oil & Gas Geology, 2015, 36(4): 666-674. | |
[10] | LI A, DING W L, WANG R Y, et al. Petrophysical characterization of shale reservoir based on nuclear magnetic resonance (NMR) experiment: A case study of Lower Cambrian Qiongzhusi Formation in eastern Yunnan Province, South China[J]. Journal of Natural Gas Science & Engineering, 2016, 37: 29-38. |
[11] | STRALEY C, ROSSINI D, VINEGAR H, et al. Core analysis by low-field NMR[J]. Log Analyst, 1997, 38(2): 84-93. |
[12] | 白松涛, 程道解, 万金彬, 等. 砂岩岩石核磁共振T2谱定量表征[J]. 石油学报, 2016, 37(3):382-391. |
BAI Songtao, CHENG Daojie, WAN Jinbin, et al. Quantitative characterization of sandstone NMR T2 spectrum[J]. Acta Petrolei Sinica, 2016, 37(3): 382-391. | |
[13] | 谭茂金, 赵文杰. 用核磁共振测井资料评价碳酸盐岩等复杂岩性储集层[J]. 地球物理学进展, 2006, 21(2):489-493. |
TAN Maojin, ZHAO Wenjie. Description of carbonate reservoirs with NMR log analysis method[J]. Progress in Geophysics, 2006, 21(2): 489-493. | |
[14] |
YAO Y, LIU D, CHE Y, et al. Petrophysical characterization of coals by low-field nuclear magnetic resonance(NMR)[J]. Fuel, 2010, 89(7): 1371-1380.
doi: 10.1016/j.fuel.2009.11.005 |
[15] | 薛晓辉, 叶建国. 核磁共振技术在煤层气勘探中的应用[J]. 油气藏评价与开发, 2013, 3(1):72-74. |
XUE Xiaohui, YE Jianguo. Application of NMR techniques in CBM exploration[J]. Reservoir Evaluation and Development, 2013, 3(1): 72-74. | |
[16] | 周尚文, 刘洪林, 闫刚, 等. 中国南方海相页岩储层可动流体及T2截止值核磁共振研究[J]. 石油与天然气地质, 2016, 37(4):612-616. |
ZHOU Shangwen, LIU Honglin, YAN Gang, et al. NMR research of movable fluid and T2 cutoff of marine shale in South China[J]. Oil & Gas Geology, 2016, 37(4): 612-616. | |
[17] | 蒋裕强, 刘雄伟, 付永红, 等. 渝西地区海相页岩储层孔隙有效性评价[J]. 石油学报, 2019, 40(10):1233-1243. |
JIANG Yuqiang, LIU Xiongwei, FU Yonghong, et al. Evaluation of effective porosity in marine shale reservoir, western Chongqing[J]. Acta Petrolei Sinica, 2019, 40(10): 1233-1243. | |
[18] | 任延广, 朱德丰, 万传彪, 等. 松辽盆地北部深层地质特征与天然气勘探方向[J]. 中国石油勘探, 2004, 9(4):12-18. |
REN Yanguang, ZHU Defeng, WAN Chuanbiao, et al. Deep geological characteristics and natural gas exploration direction in northern Songliao Basin[J]. China Petroleum Exploration, 2004, 9(4): 12-18. | |
[19] | 李楚雄, 申宝剑, 潘安阳, 等. 波罗的海盆地上奥陶统页岩孔隙演化的热压模拟实验[J]. 石油实验地质, 2020, 42(3):434-442. |
LI Chuxiong, SHEN Baojian, PAN Anyang, et al. Thermal-pressure simulation experiment of pore evolution of Upper Ordovician shale in Baltic Basin[J]. Petroleum Geology & Experiment, 2020, 42(3): 434-442. | |
[20] | 任晓娟. 低渗砂岩储层孔隙结构与流体微观渗流特征研究[D]. 西安: 西北大学, 2006. |
REN Xiaojuan. Pore structure of low permeability sand rock and fluid flowing characteristics[D]. Xi'an: Northwest University, 2006. | |
[21] | 范宜仁, 刘建宇, 葛新民, 等. 基于核磁共振双截止值的致密砂岩渗透率评价新方法[J]. 地球物理学报, 2018, 61(4)1628-1638. |
FAN Yiren, LIU Jianyu, GE Xinmin, et al. Permeability evaluation of tight sandstone based on dual T2 cutoff values measured by NMR[J]. Chinese Journal of geophysics, 2018, 61(4): 1628-1638. | |
[22] | 梁志凯, 李卓, 姜振学, 等. 基于NMR和SEM技术研究陆相页岩孔隙结构与分形维数特征——以松辽盆地长岭断陷沙河子组页岩为例[J]. 地球科学与环境学报, 2020, 42(3):313-328. |
LIANG Zhikai, LI Zhuo, JIANG Zhenxue, et al. Characteristics of pore structure and fractal dimension in continental shale based on NMR experiment and SEM image analyses: A case study of Shahezi Formation Shale in Changling Fault Depression of Songliao Basin, China[J]. Journal of Earth Sciences and Environment, 2020, 42(3): 313-328. | |
[23] | 王赞惟. 鄂尔多斯盆地东缘临兴地区盒8段储层微观孔隙结构及渗流特征[J]. 非常规油气, 2020, 7(1):59-64. |
WANG Zanwei. Microscopic Pore Structure and the Seepage Characteristics in Tight Sandstone Reservoir of the 8th Member of Lower Shihezi Formation in Linxing Area of East Ordos Basin[J]. Unconventional Oil & Gas, 2020, 7(1): 59-64. | |
[24] | COATES G R, XIAO L Z, PRAMMER M G. NMR logging principles and applications[M]. Houston: Gulf Publishing Company, 1999. |
[25] | LIU Y, YAO Y B, LIU D M, et al. Shale pore size classification: An NMR fluid typing method[J]. Marine and Petroleum Geology, 2018: 591-601. |
[26] |
KHATIBI S, OSTADHASSAN M, XIE Z H, et al. NMR relaxometry a new approach to detect geochemical properties of organic matter in tight shales[J]. Fuel, 2019, 235: 167-177.
doi: 10.1016/j.fuel.2018.07.100 |
[27] | SONDERGELD C H, AMBROSE R J, RAI C S, et al. Microstructural studies of gas shales[C]// Paper SPE-131771-MS presented at the SPE Unconventional Gas Conference, Pittsburgh, Pennsylvania, USA, February 2010. |
[28] | CURTIS J B. Fractured shale-gas system[J]. AAPG Bulletin, 2002, 86(11): 1921-1938. |
[29] | 焦淑静, 张慧, 薛东川, 等. 泥页岩有机显微组分的扫描电镜形貌特征及识别方法[J]. 电子显微学报, 2018, 37(2):137-144. |
JIAO Shujing, ZHANG Hui, XUE Dongchuan, et al. Morphological structure and identify method of organic macerals of shale with SEM[J]. Journal of Chinese Electron Microscopy Society, 2018, 37(2): 137-144. | |
[30] |
LOUCKS R G, REED R M, RUPPEL S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96: 1071-1098.
doi: 10.1306/08171111061 |
[31] | 汤克轩, 李俊丽, 李振宇, 等. 顺磁性物质对冻土核磁共振信号的影响[J]. 物探与化探, 2017, 41(6):1268-1274. |
TANG Kexuan, LI Junli, LI Zhenyu, et al. A study of the influence of paramagnetic material on the signal of NMR[J]. Geophysical & Geochemical Exploration, 2017, 41(6): 1268-1274. |
[1] | 许国晨,杜娟,祝铭辰. 苏北盆地页岩油注水吞吐增产实践与认识 [J]. 油气藏评价与开发, 2024, 14(2): 256-266. |
[2] | 张志超,柏明星,杜思宇. 页岩油藏注CO2驱孔隙动用特征研究 [J]. 油气藏评价与开发, 2024, 14(1): 42-47. |
[3] | 赵坤,李泽阳,刘娟丽,胡可,江冉冉,王伟祥,刘秀珍. 吉木萨尔页岩油井区CO2前置压裂工艺参数优化及现场实践 [J]. 油气藏评价与开发, 2024, 14(1): 83-90. |
[4] | 姚红生, 王伟, 何希鹏, 郑永旺, 倪振玉. 南川复杂构造带常压页岩气地质工程一体化开发实践 [J]. 油气藏评价与开发, 2023, 13(5): 537-547. |
[5] | 李京昌, 卢婷, 聂海宽, 冯动军, 杜伟, 孙川翔, 李王鹏. 威荣地区WY23平台页岩气层裂缝地震检测可信度评价 [J]. 油气藏评价与开发, 2023, 13(5): 614-626. |
[6] | 夏海帮, 韩克宁, 宋文辉, 王伟, 姚军. 页岩气藏多尺度孔缝介质压裂液微观赋存机理研究 [J]. 油气藏评价与开发, 2023, 13(5): 627-635. |
[7] | 侯大力, 韩鑫, 唐洪明, 郭建春, 龚凤鸣, 孙雷, 强贤宇. 龙马溪组页岩干酪根表征初探及干酪根吸附特征研究 [J]. 油气藏评价与开发, 2023, 13(5): 636-646. |
[8] | 韩克宁, 王伟, 樊冬艳, 姚军, 罗飞, 杨灿. 基于产量递减与LSTM耦合的常压页岩气井产量预测 [J]. 油气藏评价与开发, 2023, 13(5): 647-656. |
[9] | 薛冈, 熊炜, 张培先. 常压页岩气藏成因分析与有效开发——以四川盆地东南缘地区五峰组—龙马溪组页岩气藏为例 [J]. 油气藏评价与开发, 2023, 13(5): 668-675. |
[10] | 楼章华, 张欣柯, 吴宇辰, 高玉巧, 张培先, 金爱民, 朱蓉. 四川盆地南川地区及邻区页岩气保存差异的流体响应特征 [J]. 油气藏评价与开发, 2023, 13(4): 451-458. |
[11] | 胡之牮, 李树新, 王建君, 周鸿, 赵玉龙, 张烈辉. 复杂人工裂缝产状页岩气藏多段压裂水平井产能评价 [J]. 油气藏评价与开发, 2023, 13(4): 459-466. |
[12] | 林魂, 孙新毅, 宋西翔, 蒙春, 熊雯欣, 黄俊和, 刘洪博, 刘成. 基于改进人工神经网络的页岩气井产量预测模型研究 [J]. 油气藏评价与开发, 2023, 13(4): 467-473. |
[13] | 刘洪林,周尚文,李晓波. PCA-OPLS联合法快速评价页岩气井储量动用程度 [J]. 油气藏评价与开发, 2023, 13(4): 474-483. |
[14] | 陈秀林, 王秀宇, 许昌民, 张聪. 基于核磁共振与微观数值模拟的CO2埋存形态及分布特征研究 [J]. 油气藏评价与开发, 2023, 13(3): 296-304. |
[15] | 卢比,胡春锋,马军. 南川页岩气田压裂水平井井间干扰影响因素及对策研究 [J]. 油气藏评价与开发, 2023, 13(3): 330-339. |
|