油气藏评价与开发 ›› 2022, Vol. 12 ›› Issue (4): 580-588.doi: 10.13809/j.cnki.cn32-1825/te.2022.04.005
朱苏阳1(),孟尚志2,彭小龙1,李相臣1,张千贵1,张斯1
收稿日期:
2022-05-24
出版日期:
2022-08-26
发布日期:
2022-09-02
作者简介:
朱苏阳(1989—),男,博士后,副教授,主要从事油藏工程、煤层气开发、页岩气开发、渗流力学、数值模拟方面的研究。地址:四川省成都市新都区新都大道8号国重B404,邮政编码:610500。E-mail: 基金资助:
ZHU Suyang1(),MENG Shangzhi2,PENG Xiaolong1,LI Xiangchen1,ZHANG Qiangui1,ZHANG Si1
Received:
2022-05-24
Online:
2022-08-26
Published:
2022-09-02
摘要:
岩石对流体的润湿性决定了孔隙中流体的分布特征,多孔介质中的小孔隙优先被润湿相流体占据。基于这一原理,分析了目前煤岩润湿性实验与煤层气赋存状态的矛盾,从煤岩润湿性的角度,提出了两种可能的煤层气宏观赋存模式。如果煤岩亲气,甲烷在毛管压力的作用下,可以被割理中的水封闭在煤基质中。由于煤基质和割理界面处的毛管压力,煤层气的吸附是平衡的,但赋存可以出现欠饱和状态,这也是排采过程中出现临界解吸现象的原因。当煤岩水相润湿时,水相需要占据煤岩中的小孔隙(基质),甲烷可以通过液相吸附的形态储存在基质中。液相吸附中,排采过程的临界解吸源自欠饱和的煤层气溶解状态。通过煤层气液相吸附的验证实验,也表明甲烷可以通过液相吸附的形式大量赋存于煤层中。
中图分类号:
朱苏阳,孟尚志,彭小龙,李相臣,张千贵,张斯. 煤岩润湿性对煤层气赋存的影响机理[J]. 油气藏评价与开发, 2022, 12(4): 580-588.
ZHU Suyang,MENG Shangzhi,PENG Xiaolong,LI Xiangchen,ZHANG Qiangui,ZHANG Si. Mechanism of coal wettability on storage state of undersaturated CBM reservoirs[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(4): 580-588.
[1] | 宋岩, 李卓, 姜振学, 等. 非常规油气地质研究进展与发展趋势[J]. 石油勘探与开发, 2017, 44(4):638-648. |
SONG Yan, LI Zhuo, JIANG Zhenxue, et al. Progress and development trend of unconventional oil and gas geological research[J]. Petroleum Exploration and Development, 2017, 44(4): 638-648. | |
[2] | 朱苏阳, 彭小龙, 张守仁, 等. 欠饱和煤层气藏中气体赋存状态的思考与讨论[C]// 中国煤层气勘探开发技术与产业化发展战略—2019年煤层气学术研讨会论文集, 2019:311-317. |
ZHU Suyang, PENG Xiaolong, ZHANG Shouren, et al. Thoughts and discussion on storage state of undersaturated coalbed methane reservoirs[C]// China's Coalbed Methane Exploration and Development Technology and Industrialization Development Strategy--2019 Coalbed Methane Symposium Proceedings, 2019: 311-317. | |
[3] | 杨兆彪, 李洋阳, 秦勇, 等. 煤层气多层合采开发单元划分及有利区评价[J]. 石油勘探与开发, 2019, 46(3):559-568. |
YANG Zhaobiao, LI Yangyang, QIN Yong, et al. Development unit division and favorable area evaluation for joint mining coalbed methane[J]. Petroleum Exploration and Development, 2019, 46(3): 559-568. | |
[4] | 王西贵, 邹德永, 杨立文, 等. 深层超深层煤层气保压取心工具设计[J]. 石油机械, 2020, 48(1):40-45. |
WANG Xigui, ZOU Deyong, YANG Liwen, et al. Design of a Pressure-Preservation Coring Tool for Deep and Ultra-Deep Coalbed Methane Samples[J]. China Petroleum Machinery, 2020, 48(1): 40-45. | |
[5] | 康志勤, 李翔, 李伟, 等. 煤体结构与甲烷吸附/解吸规律相关性实验研究及启示[J]. 煤炭学报, 2018, 43(5):1400-1407. |
KANG Zhiqin, LI Xiang, LI Wei, et al. Experimental investigation of methane adsorption / desorption behavior in coals with different coal-body structure and its revelation[J]. Journal of China Coal Society, 2018, 43(5): 1400-1407. | |
[6] | 朱峰, 郭智栋, 陈世波, 等. 煤层气连续管排液采气一体化工艺研究与应用[J]. 石油机械, 2021, 49(1):118-123. |
ZHU Feng, GUO Zhidong, CHEN Shibo, et al. Research and application of the integrated technology of liquid drainage and CBM production by coiled tubing[J]. China Petroleum Machinery, 2021, 49(1): 118-123. | |
[7] |
FENG Q H, ZHANG J Y, ZHANG X M, et al. Optimizing well placement in a coalbed methane reservoir using the particle swarm optimization algorithm[J]. International Journal of Coal Geology, 2012, 104: 34-45.
doi: 10.1016/j.coal.2012.09.004 |
[8] | 罗平亚. 关于大幅度提高我国煤层气井单井产量的探讨[J]. 天然气工业, 2013, 33(6):1-6. |
LUO Pingya. A discussion on how to significantly improve the single-well productivity of CBM gas wells in China.[J]. Nature Gas Industry, 2013, 33(6): 1-6. | |
[9] | SEIDLE J. Fundamentals of coalbed methane reservoir engineering[M]. Tulsa: PennWell Books, 2011. |
[10] | 村田逞诠. 煤的润湿性研究及其应用[M]. 北京: 煤炭工业出版社, 1992. |
MURATA Takusen. The study and application of coal wettability[M]. Beijing: Geology Industry Press, 1992. | |
[11] |
NIU C, XIA W, PENG Y. Analysis of coal wettability by inverse gas chromatography and its guidance for coal flotation[J]. Fuel, 2018, 228: 290-296.
doi: 10.1016/j.fuel.2018.04.146 |
[12] | 李娇阳, 李凯琦. 煤表面润湿性的影响因素[J]. 煤炭学报, 2016, 41(S2):448-453. |
LI Jiaoyang, LI Kaiqi. Influence factors of coal surface wettability[J]. Journal of China Coal Society, 2016, 41(S2): 448-453. | |
[13] | 苏雪峰, 刘岩, 崔周旗, 等. 降压速率对沁水盆地南部高阶煤产气能力的影响[J]. 石油勘探与开发, 2019, 46(3):613-620. |
SU Xuefeng, LIU Yan, CUI Zhouqi, et al. Influence of depressurization rate on gas production capacity of high-rank coal in the south of Qinshui Basin, China[J]. Petroleum Exploration and Development, 2019, 46(3): 613-620. | |
[14] | 孟艳军, 汤达祯, 许浩, 等. 煤层气解吸阶段划分方法及其意义[J]. 石油勘探与开发, 2014, 41(5):612-617. |
MENG Yanjun, TANG Dazhen, XU hao, et al. Division of coalbed methane desorption stages and its significance[J]. Petroleum Exploration and Development, 2014, 41(5): 612-617. | |
[15] | 李传亮. 油藏工程原理[M]. 第2版. 北京: 石油工业出版社, 2011. |
LI Chuanliang. Fundamentals of reservoir engineering[M]. 2nd ed. Beijing: Petroleum Industry Press, 2011. | |
[16] | 邹才能. 非常规油气地质[M]. 第2版 北京: 地质出版社, 2013. |
ZOU Caineng. Geology of unconventional oil and gas reservoirs[M]. 2nd ed. Beijing: The Geology Press, 2013. | |
[17] | 彭小龙, 费冬, 朱苏阳, 等. 煤层气吸附-解吸机理再认识[J]. 中国煤层气, 2019, 16(2):9-12. |
PENG Xiaolong, FEI Dong, ZHU Suyang, et al. Reconsideration of coalbed methane adsorption-desorption mechanism[J]. China Coalbed Methane, 2019, 16(2): 9-12. | |
[18] | 傅献彩, 沈文霞, 姚天扬, 等. 物理化学[M].第5版. 北京: 高等教育出版社, 2006. |
FU Xiancai, SHEN Wenxia, YAO Tianyang, et al. Physical chemistry[M]. 5th ed. Beijing: Advance Education Press, 2006. | |
[19] | ATKINS P, DE PAULA J. Physical Chemistry[M]. 9th ed. Boca Raton: W.H. Freeman, 2009. |
[20] | HIEMENZ P C, RAJAGOPALAN R. Principles of colloid and surface chemistry, revised and expanded[M]. 3rd ed. Boca Raton: Chemical Rubber Company Press, 1997. |
[21] | 近藤精一, 石川达雄, 安部郁夫. 吸附科学[M]. 第2版. 北京: 化学工业出版社,2006. |
KONDO Seiichi, ISHIKAWA Tatsuo, ABE Ikuo. Science of adsorption[M]. 2nd ed. Beijing: Chemical Industry Press, 2006. | |
[22] | 朱苏阳. 煤层气的吸附-解吸机理及应用研究[D]. 成都: 西南石油大学, 2018. |
ZHU Suyang. The mechanism and application studies on coalbed methane adsorption and desorption[D]. Chengdu: Southwest Petroleum University, 2018. | |
[23] | 朱苏阳, 李传亮, 杜志敏, 等. 也谈煤层气的液相吸附[J]. 新疆石油地质, 2015, 36(5):101-104. |
ZHU Suyang, LI Chuanliang, DU Zhimin, et al. Discussion on liquid phase adsorption of coalbed methane[J]. Xinjiang Petroleum Geology, 2015, 36(5): 101-104. | |
[24] | 邵长奎. 煤储层开发三相态含气量动态数值模拟研究[D]. 徐州: 中国矿业大学,2014. |
SHAO Changkui. Numerical simulation of three phase gas content dynamic changes in recovery of coal reservoirs[D]. Xuzhou: China University of Mining and Technology, 2014. | |
[25] |
MOORE T A. Coalbed methane: A review[J]. International Journal of Coal Geology, 2012, 101(6): 36-81.
doi: 10.1016/j.coal.2012.05.011 |
[26] | 杨兆彪, 吴丛丛, 张争光, 等. 煤层气产出水的地球化学意义——以贵州松河区块开发试验井为例[J]. 中国矿业大学学报, 2017, 46(4):830-837. |
YANG Zhaobiao, WU Congcong, ZHANG Zhengguang, et al. Geochemical significance of CBM produced water: A case study of developed test wells in Songhe block of Guizhou Province[J]. Journal of China University of Mining and Technology, 2017, 46(4): 830-837. | |
[27] | 康园园, 邵先杰, 王彩凤. 高—中煤阶煤层气井生产特征及影响因素分析—以樊庄、韩城矿区为例[J]. 石油勘探与开发, 2012, 39(6):728-732. |
KANG Yuanyuan, SHAO Xianjie, WANG Caifeng. Production characteristics and affecting factors of high-mid rank coalbed methane wells: Taking Fanzhuang and Hancheng mining areas as examples[J]. Petroleum Exploration and Development, 2012, 39(6): 728-732. | |
[28] | 傅雪海, 秦勇, 韦重韬. 煤层气地质学[M]. 徐州: 中国矿业大学出版社, 2007. |
FU Xuehai, QIN Yong, WEI Chongtao. Geology of coalbed methane[M]. Xuzhou: China University of Mining and Technology Press, 2007. | |
[29] |
CLARKSON C R, QANBARI F. Transient flow analysis and partial water relative permeability curve derivation for low permeability undersaturated coalbed methane wells[J]. International Journal of Coal Geology, 2015, 152: 110-124.
doi: 10.1016/j.coal.2015.10.008 |
[30] | KHAVARI-KHORASANI G, MICHELSEN J K. Coal bed gas content and gas undersaturation[M]. Netherlands: Kluwer Academic Publishers, 1999. |
[31] | 胡素明, 李相方, 胡小虎, 等. 欠饱和煤层气藏的生产动态预测方法[J]. 西南石油大学学报(自然科学版), 2012, 34(5):119-124. |
HU Suming, LI Xiangfang, HU Xiaohu, et al. Production performance prediction method for undersaturated CBM reservoirs[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2012, 34(5): 119-124. | |
[32] | 朱苏阳, 李传亮, 杜志敏, 等. 煤层气的复合解吸模式研究[J]. 中国矿业大学学报, 2016, 45(2):316-324. |
ZHU Suyang, LI Chuanliang, DU Zhimin, et al. Compound desorption model of coalbed methane[J]. Journal of China University of Mining & Technology, 2016, 45(2): 316-324. |
[1] | 桑树勋,韩思杰,周效志,刘世奇,王月江. 华东地区深部煤层气资源与勘探开发前景 [J]. 油气藏评价与开发, 2023, 13(4): 403-415. |
[2] | 吴壮坤, 张宏录, 池宇璇, 印中华, 张壮. 新型排采泵在延川南深层煤层气井的改进及应用 [J]. 油气藏评价与开发, 2023, 13(4): 416-423. |
[3] | 施雷庭, 赵启明, 任镇宇, 朱诗杰, 朱珊珊. 煤岩裂隙形态对渗流能力影响数值模拟研究 [J]. 油气藏评价与开发, 2023, 13(4): 424-432. |
[4] | 孔祥伟,谢昕,王存武,时贤. 基于灰色关联方法的深层煤层气井压后产能影响地质工程因素评价 [J]. 油气藏评价与开发, 2023, 13(4): 433-440. |
[5] | 姚红生,肖翠,陈贞龙,郭涛,李鑫. 延川南深部煤层气高效开发调整对策研究 [J]. 油气藏评价与开发, 2022, 12(4): 545-555. |
[6] | 石军太,李文斌,张龙龙,季长江,李国富,张遂安. 压裂过程数据对原始煤储层压力反演方法研究 [J]. 油气藏评价与开发, 2022, 12(4): 564-571. |
[7] | 张斯,彭小龙. 欠饱和煤层气藏临界解吸压力计算方法 [J]. 油气藏评价与开发, 2022, 12(4): 589-595. |
[8] | 陈跃,王丽雅,李国富,张林,杨甫,马卓远,高正. 基于随机森林算法的低煤阶煤层气开发选区预测 [J]. 油气藏评价与开发, 2022, 12(4): 596-603. |
[9] | 杨兆中,袁健峰,朱静怡,李小刚,李扬,王浩. 煤层气注热增产研究进展 [J]. 油气藏评价与开发, 2022, 12(4): 617-625. |
[10] | 张龙,王一兵,鲜保安,张亚飞,谭章龙,哈尔恒·吐尔松,孙昊,王冠,张锦涛. 新疆阜康矿区煤层气双管柱筛管完井机理与适用性研究 [J]. 油气藏评价与开发, 2022, 12(4): 633-642. |
[11] | 李鑫. 构造对深层煤层气井产能的控制研究 [J]. 油气藏评价与开发, 2021, 11(4): 643-651. |
[12] | 姚红生,陈贞龙,郭涛,李鑫,肖翠,解飞. 延川南深部煤层气地质工程一体化压裂增产实践 [J]. 油气藏评价与开发, 2021, 11(3): 291-296. |
[13] | 蒋永平,杨松. 鄂尔多斯盆地东缘延川南区块煤层气井排水采气新工艺 [J]. 油气藏评价与开发, 2021, 11(3): 384-389. |
[14] | 葛静涛,叶新民,陶文雯,宋关伟. 煤层气松耦合自动化排采控制技术研究 [J]. 油气藏评价与开发, 2020, 10(6): 126-130. |
[15] | 杨庭宝,钟会影,夏惠芬,赵欣. 基于微观渗流特征的水驱后残余油动用机理研究 [J]. 油气藏评价与开发, 2020, 10(6): 46-52. |
|