油气藏评价与开发 ›› 2023, Vol. 13 ›› Issue (2): 233-239.doi: 10.13809/j.cnki.cn32-1825/te.2023.02.012

• 方法理论 • 上一篇    下一篇

大庆厚油层内各结构单元分流率变化特征实验研究

裴秀玲1(),李嘉琪1,马旭飞1,张爱祥1,张蕾蕾1,卢祥国2,何欣2()   

  1. 1.中国石油大庆油田第六采油厂,黑龙江 大庆 163114
    2.东北石油大学提高油气采收率教育部重点实验室,黑龙江 大庆 163318
  • 收稿日期:2021-09-17 发布日期:2023-04-26 出版日期:2023-04-26
  • 通讯作者: 何欣(1995—),女,在读博士研究生,主要从事提高采收率方面研究。地址:黑龙江省大庆市开发区东北石油大学石油工程学院,邮政编码:163318。E-mail:2517490697@qq.com
  • 作者简介:裴秀玲(1972—),女,硕士,高级工程师,主要从事油田开发研究工作。地址:黑龙江省大庆市开发区东北石油大学石油工程学院,邮政编码:163318。E-mail:a18045976256@163.com
  • 基金资助:
    国家自然科学基金面上项目“抗盐型聚合物油藏适应性及其改进方法基础研究”(51574086);中国石油大庆油田重点科技攻关项目“太18-38井区注聚体系筛选及参数优化研究”(DQYT-0506003-2020-JS-323)

Experimental study on change characteristics of fractional flow rate of each structural unit in thick oil reservoir of Daqing Oilfield

PEI Xiuling1(),LI Jiaqi1,MA Xufei1,ZHANG Aixiang1,ZHANG Leilei1,LU Xiangguo2,HE Xin2()   

  1. 1. No. 6 Oil Production Plant of Daqing Oilfield, PetroChina, Daqing, Heilongjiang 163114, China
    2. Key Laboratory of Improving Oil and Gas Recovery, Ministry of Education, Northeast Petroleum University, Daqing, Heilongjiang 163318, China
  • Received:2021-09-17 Online:2023-04-26 Published:2023-04-26

摘要:

为提高层内非均质储层各结构单元注采端分流率规律的认识,针对大庆喇嘛甸油田厚油层多段多韵律特征,通过“分注分采”岩心构建了层内非均质油藏模型,利用物理模拟实验分别研究了渗透率级差及注入速度对于水驱分流率变化规律的影响。结果表明,在水驱到0.4 PV时,分流率曲线出现“拐点”。在注入端,0.4 PV前,注入水主要进入高渗层;0.4 PV后,中低渗透层吸液量增加。对于正韵律储层,随渗透率级差增加,中低渗透层波及体积减少,采收率减小;随平均渗透率增加,中低渗透层波及体积增加,水驱采收率增加。对于复合韵律储层,正反复合韵律大于反正复合韵律的采收率数值。在注入端,当注入速度为0.6 mL/min时,随注入PV数增大,高渗透层分流率增加,中低渗透层则减小。当注入速度分别为0.9 mL/min和1.2 mL/min时,随注入PV数增大,高渗透层分流率呈现“先增后降”,中低渗透层则呈“先降后增”趋势。随注入速度增加,中低渗层采收率及其占总采收率百分比逐渐提高。研究结果对于加深层内非均质油层内注采端分流率机理认识具有一定的指导意义。

关键词: 厚油层, 水驱, 注采端分流率, 影响因素, 机理分析, 层内非均质, 大庆油田

Abstract:

In order to improve the understanding of the fractional rate law of injection and production ends in each structural unit of intraformational heterogeneous reservoir, aiming at the multi section and multi rhythm characteristics of thick oil layer in Lamadian Oilfield, Daqing, a model of intraformational heterogeneous reservoir is constructed by the “separate injection and separate production” core, and the effects of permeability gradient and injection speed on the fractional rate change law of water flooding are studied by physical simulation experiment. The results show that when water flooding reaches 0.4 PV, there is an inflection point in the flow rate curve. At the injection end, before 0.4 PV the injected water mainly enters into the high permeability layer, and after 0.4 PV, the liquid absorption of the middle and low permeability layer increases. For the positive rhythm reservoir, with the increase of permeability gradient, the swept volume of medium low permeability layer decreases and the recovery factor decreases; With the increase of the average permeability, the swept volume of the low and medium permeability layer increases, and the water flooding recovery increases. For the compound rhythm reservoir, the positive and negative compound rhythm is greater than the negative compound rhythm. When the injection rate is 0.6 mL/min at the injection end of heterogeneous core, with the increase of number of pore volumes(PV), the fractional flow rate of high permeability layer increases, while that of low permeability layer decreases. When the injection rate is 0.9 mL/min and 1.2 mL/min, with the increase of number of pore volumes(PV), the fractional flow rate of high permeability layer increases first and then decreases, while that of low permeability layer decreases first and then increases. With the increase of injection rate, the recovery rate and its percentage in the total recovery rate of low and medium permeability layers increase gradually. The research results have a certain guiding significance for the understanding of the mechanism of the split ratio at both ends of the injection and production in the deep heterogeneous reservoir.

Key words: thick oil layer, water drive, fractional flow rate of injection and production ends, influencing factors, mechanism analysis, intra-layer heterogeneity, Daqing Oilfield

中图分类号: 

  • TE357