[1] |
周娟. 页岩气吸附与CO2驱替及封存机理的分子模拟研究[D]. 北京: 清华大学, 2021.
|
|
ZHOU Juan. Atomistic insights into mechanisms of shale gas adsorption and carbon dioxide displacement and storage[D]. Beijing: Tsinghua University, 2021.
|
[2] |
LI J W, SUN C H. Molecular insights on competitive adsorption and enhanced displacement effects of CO2/CH4 in coal for low-carbon energy technologies[J]. Energy, 2022, 261: 125176.
|
[3] |
WANG S, FENG G H, JAVADPOUR F, et al. Competitive adsorption of methane and ethane in montmorillonite nanopores of shale at supercritical conditions: A grand canonical Monte Carlo simulation study[J]. Chemical Engineering Journal, 2019, 355: 76-90.
|
[4] |
SUI H G, ZHANG F Y, WANG Z Q, et al. Effect of kerogen maturity, water content for carbon dioxide, methane, and their mixture adsorption and diffusion in kerogen: A computational investigation[J]. Langmuir, 2020, 36(33): 9756-9769.
|
[5] |
ZHOU J, JIN Z H, LUO K H. Effects of moisture contents on shale gas recovery and CO2 sequestration[J]. Langmuir, 2019, 35(26): 8716-8725.
|
[6] |
RANI S, PADMANABHAN E, PRUSTY B K. Review of gas adsorption in shales for enhanced methane recovery and CO2 storage[J]. Journal of Petroleum Science and Engineering, 2019, 175: 634-643.
|
[7] |
刘思雨, 杨国栋, 黄冕, 等. 人工裂缝参数对CO2-ESGR中CO2封存和CH4开采的影响[J]. 石油与天然气化工, 2024, 53(2): 94-100.
|
|
LIU Siyu, YANG Guodong, HUANG Mian, et al. Effects of artificial fracture parameters on CO2 sequestration and CH4 production in CO2-ESGR[J]. Chemical Engineering of Oil & Gas, 2024, 53(2): 94-100.
|
[8] |
惠波, 赵博超, 杨尚儒, 等. CO2增能压裂不同生产阶段裂缝内CO2滞留碳埋存[J]. 石油与天然气化工, 2024, 53(5): 84-92.
|
|
HUI Bo, ZHAO Bochao, YANG Shangru, et al. CO2 retention and carbon storage in fractures at different production stages of CO2 energized fracturing[J]. Chemical Engineering of Oil & Gas, 2024, 53(5): 84-92.
|
[9] |
张志超, 柏明星, 杜思宇. 页岩油藏注CO2驱孔隙动用特征研究[J]. 油气藏评价与开发, 2024, 14(1): 42-47.
|
|
ZHANG Zhichao, BAI Mingxing, DU Siyu. Characteristics of pore dynamics in shale reservoirs by CO2 flooding[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 42-47.
|
[10] |
黄亮. 基于分子模拟的页岩气多组分竞争吸附机理研究[D]. 北京: 中国石油大学(北京), 2020.
|
|
HUANG Liang. Molecular simulation study on competitive adsorption mechanism of multi-components in shale gas reservoir[D]. Beijing: China University of Petroleum(Beijing), 2020.
|
[11] |
田伟. 页岩中CH4、C2H6及其二元混合物的吸附规律研究[D]. 北京: 中国石油大学(北京), 2022.
|
|
TIAN Wei. Study on the adsorption law of CH4, C2H6 and their binary mixtures in shale[D]. Beijing: China University of Petroleum(Beijing), 2022.
|
[12] |
石刚, 龚赞, 黄宁, 等. 下扬子宣泾地区二叠系大隆组页岩含气量主控因素分析: 以港地1井为例[J]. 华东地质, 2023, 44(1): 93-102.
|
|
SHI Gang, GONG Zan, HUANG Ning, et al. The main controlling factors of the gas content in the Permian Dalong Formation of the Xuanjing area, the lower Yangtze region: a case study of Gangdi 1 Well[J]. East China Geology, 2023, 44(1): 93-102.
|
[13] |
SUN H Y, ZHAO H, QI N, et al. Molecular insights into the enhanced shale gas recovery by carbon dioxide in kerogen slit nanopores[J]. The Journal of Physical Chemistry C, 2017, 121(18): 10233-10241.
|
[14] |
NI R C, LING K G, AFARI S. Different ways to approach shale reservoirs’ CO2 storage potential in America[J]. Heliyon, 2023, 9(8): e18458.
|
[15] |
MILKOV A V, FAIZ M, ETIOPE G. Geochemistry of shale gases from around the world: Composition, origins, isotope reversals and rollovers, and implications for the exploration of shale plays[J]. Organic Geochemistry, 2020, 143: 103997.
|
[16] |
WANG S, YAO X Y, FENG Q H, et al. Molecular insights into carbon dioxide enhanced multi-component shale gas recovery and its sequestration in realistic kerogen[J]. Chemical Engineering Journal, 2021, 425: 130292.
|
[17] |
REZLEROVÁ E, JAIN S K, LÍSAL M. Adsorption, diffusion, and transport of C1 to C3 alkanes and carbon dioxide in dual-porosity kerogens: Insights from molecular simulations[J]. Energy & Fuels, 2023, 37(1): 492-508.
|
[18] |
LI J W, WANG Y Z, CHEN Z X, et al. Insights into the molecular competitive adsorption mechanism of CH4/CO2 in a kerogen matrix in the presence of moisture, salinity, and ethane[J]. Langmuir, 2021, 37(43): 12732-12745.
|
[19] |
KONG S Q, HUANG X, LI K J, et al. Adsorption/desorption isotherms of CH4 and C2H6 on typical shale samples[J]. Fuel, 2019, 255: 115632.
|
[20] |
YU X R, LI J, CHEN Z G, et al. Determination of CH4, C2H6 and CO2 adsorption in shale kerogens coupling sorption-induced swelling[J]. Chemical Engineering Journal, 2021, 410: 127690.
|
[21] |
COLLELL J, GALLIERO G, GOUTH F, et al. Molecular simulation and modelisation of methane/ethane mixtures adsorption onto a microporous molecular model of kerogen under typical reservoir conditions[J]. Microporous and Mesoporous Materials, 2014, 197: 194-203.
|
[22] |
MOHAMMED S, GADIKOTA G. Exploring the role of inorganic and organic interfaces on CO2 and CH4 partitioning: Case study of silica, illite, calcite, and kerogen nanopores on gas adsorption and nanoscale transport behaviors[J]. Energy & Fuels, 2020, 34(3): 3578-3590.
|
[23] |
ZHOU Y, REN Y, ZENG K C, et al. Competitive adsorption-diffusion coupling process of helium-nitrogen mixture in shale kerogen nano-slit[J]. International Journal of Heat and Mass Transfer, 2024, 225: 125408.
|
[24] |
OKIONGBO K S, APLIN A C, LARTER S R. Changes in type II kerogen density as a function of maturity: Evidence from the kimmeridge clay formation[J]. Energy & Fuels, 2005, 19(6): 2495-2499.
|
[25] |
LU T, CHEN Q. Independent gradient model based on hirshfeld partition: A new method for visual study of interactions in chemical systems[J]. Journal of Computational Chemistry, 2022, 43(8): 539-555.
|
[26] |
LU T, CHEN F. Multiwfn: A multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592.
|
[27] |
HUMPHREY W, DALKE A, SCHULTEN K. VMD: Visual molecular dynamics[J]. Journal of Molecular Graphics, 1996, 14(1): 33-38.
|
[28] |
孟祥曦. 表面活性剂对煤体的微观湿润机理及复配优选研究[D]. 阜新: 辽宁工程技术大学, 2022.
|
|
MENG Xiangxi. Study on micro wetting mechanism and compound optimization of surfactant on coal[D]. Fuxin: Liaoning Technical University, 2022.
|
[29] |
贾进章, 邢迎欢, 李斌, 等. 基于蒙特卡罗的硫化氢吸附-扩散机理[J]. 煤炭学报, 2024, 49(2): 845-864.
|
|
JIA Jinzhang, XING Yinghuan, LI Bin, et al. Research on the adsorption-diffusion mechanism of hydrogen sulfide based on Monte Carlo simulation[J]. Journal of China Coal Society, 2024, 49(2): 845-864.
|
[30] |
黄建湘. 基于分子表面静电势参数的定量结构-性质/活性关系研究[D]. 杭州: 浙江大学, 2016.
|
|
HUANG Jianxiang. QSPR/QSAR studies with the descriptors derived from electrostatic potentials on molecular surface[D]. Hangzhou: Zhejiang University, 2016.
|
[31] |
DESIRAJU G R. Supramolecular synthons in crystal engineering: A new organic synthesis[J]. Angewandte Chemie International Edition in English, 1995, 34(21): 2311-2327.
|
[32] |
LIU X Q, XUE Y, TIAN Z Y, et al. Adsorption of CH4 on nitrogen- and boron-containing carbon models of coal predicted by density-functional theory[J]. Applied Surface Science, 2013, 285: 190-197.
|
[33] |
ROBIN A Y, FROMM K M. Coordination polymer networks with O- and N-donors: What they are, why and how they are made[J]. Coordination Chemistry Reviews, 2006, 250: 2127-2157.
|
[34] |
GHOSH A K, HAZRA A, MONDAL A, et al. Weak interactions: The architect behind the structural diversity of coordination polymer[J]. Inorganica Chimica Acta, 2019, 488: 86-119.
|
[35] |
曾泉树, 高清春, 汪志明. 煤岩吸附高压甲烷的实验与模型研究[J]. 石油科学通报, 2020, 5(1): 78-92.
|
|
ZENG Quanshu, GAO Qingchun, WANG Zhiming. Experimental and modeling studies on high pressure methane adsorbed on coals[J]. Petroleum Science Bulletin, 2020, 5(1): 78-92.
|
[36] |
杨琴, 黄亮, 周文, 等. 深层页岩伊利石孔隙中甲烷吸附相密度特征[J]. 断块油气田, 2023, 30(5): 799-807.
|
|
YANG Qin, HUANG Liang, ZHOU Wen, et al. Adsorption phase density characteristics of methane in illite pores of deep shale[J]. Fault-Block Oil & Gas Field, 2023, 30(5): 799-807.
|
[37] |
HAN Q, DENG C B, GAO T, et al. Molecular simulation on competitive adsorption differences of gas with different pore sizes in coal[J]. Molecules, 2022, 27(5): 1594.
|