油气藏评价与开发 >
2025 , Vol. 15 >Issue 6: 1070 - 1079
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2025.06.013
二连盆地低阶煤地质工程一体化压裂技术实践
收稿日期: 2024-09-19
网络出版日期: 2025-10-24
Application of integrated geological-engineering fracturing technology in low-rank coal of Erlian Basin
Received date: 2024-09-19
Online published: 2025-10-24
中国低阶煤煤层气资源量约为10.3×1012 m3,其中二连盆地群占总资源量的四分之一,具有大规模工业开发潜力。二连盆地吉尔嘎朗图区块煤储层具有低阶煤(镜质体反射率为0.35%,)、低温(26.6 ℃)、低杨氏模量(1 500~2 000 MPa)、低压力系数(1.02~1.03)、低含气量(1.8 m3/t)、超低延伸应力(7 MPa)、巨厚煤层(垂直厚度40~128 m)“六低一厚”的特点。前期勘探评价22口井,由于对地质认识不深入、工艺体系不成熟、技术方案不匹配等因素,各井在压裂投产后均未取得理想产气效果。该研究在深化研究区地质条件认识基础上,明确开发存在的关键问题,认识到低含气量需要体积压裂获取工业气量,温度低需要攻关低温破胶技术防止储层伤害,巨厚煤层需要优选优质主力层段集中改造,低压力系数需要降低泥浆漏失与压裂液滤失,塑性强需要克服支撑剂嵌入对导流能力的影响。在厘清压裂改造难点后,针对性攻关形成了基于地质工程一体化压裂理念的低煤阶水平井聚能分段体积压裂技术。修正机械比能模型,计算煤岩破碎指数进行煤岩可压性评价,进而优选出地质工程双“甜点”集中压裂改造。升级低温可溶桥塞+射孔联作压裂工艺,光套管泵注提供高排量压裂施工空间。匹配射孔参数,射孔长度2 m,孔密16孔/m,相位角60°螺旋射孔。优化压裂规模与强度,设计压裂液量1 500 m3/段,加砂用量180 m3/段,排量18 m3/min。研发低温、低质量浓度、低伤害胍胶压裂液体系,采用粒径分别为0.106~0.212 mm、0.212~0.425 mm、0.425~0.850 mm的组合加砂方式。在研究区JP1井现场成功应用,压后稳定日产气量突破4 000 m3,成为中国低阶煤套管压裂水平井产量最高单井,有力助推了中国低阶煤煤层气效益开发进程。
韩明哲 , 杨小平 , 马文峰 , 肖梦媚 , 王璇 , 刘俣含 , 贾巍 , 方慧丽 , 张洋 , 连小华 , 王青川 , 聂志昆 . 二连盆地低阶煤地质工程一体化压裂技术实践[J]. 油气藏评价与开发, 2025 , 15(6) : 1070 -1079 . DOI: 10.13809/j.cnki.cn32-1825/te.2025.06.013
Low-rank coalbed methane (CBM) resources in China are approximately 10.3 × 1012 m3, with the Erlian Basin group accounting for one-quarter of the total, indicating significant potential for large-scale industrial development. The coal reservoirs in the Jiergalangtu block of the Erlian Basin are characterized by six “lows” and one “thick”: low coal rank (vitrinite reflectance RO of 0.35%), low temperature (26.6 ℃), low Young’s modulus (1 500 to 2 000 MPa), low pressure coefficient (1.02 to 1.03), low gas content (1.8 m3/t), ultra-low tensile stress (7 MPa), and an extremely thick coal seam (vertical thickness of 40 to 128 m). In the early exploration and evaluation stage, 22 wells were fractured and put into production. However, none achieved ideal gas production output due to insufficient geological understanding, immature engineering techniques, and mismatched technical designs. Based on an enhanced understanding of the geological conditions, this study identified the key challenges to development. The low gas content necessitated volume fracturing to achieve industrial-scale gas production. The low temperature required breakthroughs in low-temperature gel-breaking technology to prevent reservoir damage. The extremely thick coal seam necessitated careful selection of high-quality main layers for concentrated stimulation. The low pressure coefficient required strategies to reduce mud loss and fracturing fluid filtration. The strong plasticity required measures to mitigate the impact of proppant embedment on fracture conductivity. After clarifying and addressing these challenges, the research established an integrated geological-engineering fracturing strategy for low-rank coal horizontal wells using energy-focused staged volume fracturing technology. The mechanical specific energy model was modified to calculate the coal rock breakage index, thereby enabling the evaluation of coal fracability and identification of geological-engineering dual “sweet spots” for focused stimulation. A combined fracturing technique of low-temperature soluble bridge plug and perforation was upgraded, and the unperforated casing pumping was used to facilitate adequate operational space for high-displacement fracturing. Perforation parameters were optimized as follows: perforation length of 2 m, hole density of 16 holes/m, and a 60° phased spiral perforation. The fracturing scale and intensity were optimized, with a designed fluid volume of 1 500 m3 per stage, sand addition volume of 180 m3 per stage, and a displacement rate of 18 m3/min. A low-temperature, low-concentration, and low-damage guar gum fracturing fluid system was developed, and a combination of sand addition schemes was used with particle sizes of 0.106~0.212 mm, 0.212~0.425 mm, and 0.425~0.850 mm. This integrated technology was successfully applied to well JP1 in the research area. After fracturing, the well achieved a stable gas production rate exceeding 4 000 m3/day, making it the highest-producing single well among low-rank CBM horizontal wells with cased-hole fracturing in China. This successful application effectively promotes the efficient development of low-rank CBM in China.
| [1] | 王刚, 王明哲, 刘忠, 等. 吉尔嘎朗图凹陷低煤阶煤层气地质特征及成藏规律[C]//2021年煤层气学术研讨会论文集. 北京: 中国经济出版社, 2021. |
| WANG Gang, WANG Mingzhe, LIU Zhong, et al. Geological characteristics and accumulation law of low-rank coalbed methane in Gilgalangtu Sag[C]//Proceedings of the 2021 Coalbed Methane Academic Symposium. Beijing: Economic Press China, 2021. | |
| [2] | 车长波, 杨虎林, 李富兵, 等. 我国煤层气资源勘探开发前景[J].中国矿业, 2008, 17(5): 1-4. |
| CHE Changbo, YANG Hulin, LI Fubing, et al. Exploration and development prospects of coal bed methane (CBM) resources in China[J]. China Mining Magazine, 2008, 17(5): 1-4. | |
| [3] | 张兵, 杜丰丰, 张海锋, 等. 基于经济效益评价的煤层气开发有利区优选: 以鄂尔多斯盆地东缘杨家坡区块为例[J]. 油气藏评价与开发, 2024, 14(6): 933-941. |
| ZHANG Bing, DU Fengfeng, ZHANG Haifeng, et al. Selection of favorable areas for coalbed methane development based on economic benefit evaluation: A case study of Yangjiapo block in eastern margin of Ordos Basin[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(6): 933-941. | |
| [4] | 刘大锰, 贾奇锋, 蔡益栋. 中国煤层气储层地质与表征技术研究进展[J]. 煤炭科学技术, 2022, 50(1): 196-203. |
| LIU Dameng, JIA Qifeng, CAI Yidong. Research progress on coalbed methane reservoir geology and characterization technology in China[J]. Coal Science and Technology, 2022, 50(1): 196-203. | |
| [5] | 李晨晨. 二连盆地低阶煤储层孔隙特征研究: 以吉尔嘎朗图凹陷和霍林河凹陷为例[J]. 非常规油气,2022,9(4): 37-45. |
| LI Chenchen. Study on pore characteristics of low rank coal reservoir in Erlian Basin: Taking Jiergalangtu Sag and Huolinhe Sag as example[J]. Unconventional Oil & Gas, 2022, 9(4): 37-45. | |
| [6] | 陈振宏, 孙粉锦, 李五忠, 等. 中国低煤阶煤层气勘探突破及意义: 以二连盆地吉尔嘎朗图凹陷为例[C]//2018年全国煤层气学术研讨会论文集. 北京:中国煤炭学会, 2018. |
| CHEN Zhenhong, SUN Fenjin, LI Wuzhong, et al. Low-rank coalbed methane formation mechanism and exploration application in Erlian basin group, China[C]//Proceedings of the 2018 National Coalbed Methane Academic Symposium. Beijing: China Coal Society, 2018. | |
| [7] | 黄中伟, 李国富, 杨睿月, 等. 我国煤层气开发技术现状与发展趋势[J]. 煤炭学报, 2022, 47(9): 3212-3238. |
| HUANG Zhongwei, LI Guofu, YANG Ruiyue, et al. Review and development trends of coalbed methane exploitation technology in China[J]. Journal of China Coal Society, 2022, 47(9): 3212-3238. | |
| [8] | 孙粉锦, 王勃, 李梦溪,等. 沁水盆地南部煤层气富集高产主控地质因素[J]. 石油学报, 2014, 35(6): 1070-1079. |
| SUN Fenjin, WANG Bo, LI Mengxi, et al. Major geological factors controlling the enrichment and high yield of coalbed methane in the southern Qinshui Basin[J]. Acta Petrolei Sinica, 2014, 35(6): 1070-1079. | |
| [9] | 朱庆忠, 杨延辉, 左银卿, 等. 中国煤层气开发存在的问题及破解思路[J]. 天然气工业, 2018, 38(4): 96-100. |
| ZHU Qingzhong, YANG Yanhui, ZUO Yinqing, et al. CBM development in China: Challenges and solutions[J]. Natural Gas Industry, 2018, 38(4): 96-100. | |
| [10] | 王有智. 珲春盆地八连城矿区煤岩孔隙分形特征[J]. 西南石油大学学报(自然科学版), 2020, 42(1): 57-68. |
| WANG Youzhi. Fractal characteristics of coal rock pores in the Baliancheng mining area, Hunchun Basin[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2020, 42(1): 57-68. | |
| [11] | 姜杉钰, 王峰. 中国煤系天然气共探合采的战略选择与发展对策[J]. 天然气工业, 2020,40(1): 152-159. |
| JIANG Shanyu, WANG Feng. Strategic choice and development countermeasures for the commingled exploration and exploitation of coal measure natural gas in China[J]. Natural Gas Industry, 2020, 40(1): 152-159. | |
| [12] | 孔令峰, 张军贤, 李华启, 等. 我国中深层煤炭地下气化商业化路径[J]. 天然气工业, 2020, 40(4): 156-165. |
| KONG Lingfeng, ZHANG Junxian, LI Huaqi, et al. Commercialization path of medium-deep underground coal gasification in China[J]. Natural Gas Industry, 2020, 40(4): 156-165. | |
| [13] | 张遂安, 刘欣佳, 温庆志, 等. 煤层气增产改造技术发展现状与趋势[J]. 石油学报,2021,42(1): 105-118. |
| ZHANG Suian, LIU Xinjia, WEN Qingzhi, et al. Development situation and trend of stimulation and reforming technology of coalbed methane[J]. Acta Petrolei Sinica, 2021, 42(1): 105-118. | |
| [14] | 孙晗森. 我国煤层气压裂技术发展现状与展望[J]. 中国海上油气, 2021, 33(4): 120-128. |
| SUN Hansen. Development status and prospect of CBM fracturing technology in China[J]. China Offshore Oil and Gas, 2021, 33(4): 120-128. | |
| [15] | 李根生, 黄中伟, 田守嶒, 等. 水力喷射压裂理论与应用[M].北京:科学出版社, 2011. |
| LI Gensheng, HUANG Zhongwei, TIAN Shouceng, et al. Theory and application of hydraulic jet fracturing [M]. Beijing: Science Press, 2011. | |
| [16] | 周加佳. 水平井分段压裂技术在煤层气开发中的应用实践[J]. 中国煤炭地质, 2019, 31(8): 27-30. |
| ZHOU Jiajia. Application practice of horizontal well segmental fracturing technology in CBM exploitation[J]. Coal Geology of China, 2019, 31(8): 27-30. | |
| [17] | 陈民锋, 秦立峰, 赵康, 等. 考虑压力敏感影响确定低渗透油藏有效注采井距[J]. 油气藏评价与开发, 2023, 13(6): 855-862. |
| CHEN Minfeng, QIN Lifeng, ZHAO Kang, et al. Effective injection-production well spacing in pressure-sensitive reservoir with low permeability[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(6): 855-862. | |
| [18] | 张永成, 郝海金, 李兵, 等. 煤层气水平井泵送桥塞射孔压裂技术应用研究[J].煤炭技术, 2017, 36(10): 193-195. |
| ZHANG Yongcheng, HAO Haijin, LI Bing, et al. Study on application of pumping bridge plug and clustering perforation in fracturing for coalbed methane horizontal well[J]. Coal Technology, 2017, 36(10): 193-195. | |
| [19] | 张亚飞, 王滨, 贾云林, 等. 煤层气水平井筒倾斜-水平耦合流动规律影响分析[J]. 石油机械, 2024, 52(6): 86-95. |
| ZHANG Yafei, WANG Bin, JIA Yunlin, et al. Analysis on the Flow in Horizontal Coalbed Methane Well Under Coupling of Tilted and Horizontal Sections[J]. China Petroleum Machinery, 2024, 52(6): 86-95. | |
| [20] | 陈浩, 秦勇, 邓泽, 等. 二连盆地吉尔嘎朗图凹陷低煤阶煤层生物产气影响因素[J]. 天然气工业, 2018, 38(6): 27-32. |
| CHEN Hao, QIN Yong, DENG Ze, et al. Factors influencing the biogenic gas production of low rank coal beds in the Jiergalangtu sag, Erlian Basin[J]. Natural Gas Industry, 2018, 38(6): 27-32. | |
| [21] | JONES E J P, VOYTEK M A, WARWICK P D, et al. Bioassay for estimating the biogenic methane-generating potential of coal samples[J]. International Journal of Coal Geology, 2008, 76: 138-150. |
| [22] | WANG A K, QIN Y, WU Y Y, et al. Status of research on biogenic coalbed gas generation mechanisms[J]. Mining Science and Technology, 2010, 20: 271-275. |
| [23] | 李玲玉. 郑庄煤层气低产井影响因素及增产改造技术研究[D]. 徐州: 中国矿业大学, 2021. |
| LI Lingyu. Research on influencing factors and stimulation technology of low-yield coalbed methane wells in Zhengzhuang[D]. Xuzhou: China University of Mining and Technology, 2021. | |
| [24] | 范伟顺, 刘元忠, 马登贤, 等. 煤层气L型水平井钻井工艺在山西郑庄区块应用与研究[J]. 山东国土资源, 2023, 39(8): 37-43. |
| FAN Weishun, LIU Yuanzhong, MA Dengxian, et al. Application and study of L type CBM horizontal well drilling technology in Zhengzhuang Block in Shanxi Province[J]. Shandong Land and Resources, 2023, 39(8): 37-43. |
/
| 〈 |
|
〉 |