工程工艺

前置液阶段的支撑剂段塞降低页岩储层压裂摩阻实验研究

  • 杨兆中 ,
  • 高晨轩 ,
  • 李小刚 ,
  • 刘觐瑄 ,
  • 廖梓佳
展开
  • 西南石油大学油气藏地质及开发工程国家重点实验室,四川 成都 610500
杨兆中(1969 —),男,博士,教授,主要从事油气藏增产改造理论、技术和非常规天然气开发的研究。通讯地址:四川省成都市新都区新都大道8号,邮政编码:610500。E-mail: yzzycl@vip.sina.com

收稿日期: 2019-07-24

  网络出版日期: 2020-02-04

基金资助

四川省应用基础研究项目“深层页岩填砂裂缝导流能力预测模型研究”(18YYJC1108);“十三五”国家科技重大专项“彭水地区常压页岩气勘探开发示范工程”(2016ZX05061)

Laboratory study on reducing fracturing friction of shale reservoir by proppant slug during pad

  • Zhaozhong YANG ,
  • Chenxuan GAO ,
  • Xiaogang LI ,
  • Jinxuan LIU ,
  • Zijia LIAO
Expand
  • State key Laboratory of Oil and Gas Reservoir Geology and Development Engineering, Southwest University of Petroleum, Chengdu, Sichuan 610500, China

Received date: 2019-07-24

  Online published: 2020-02-04

摘要

针对涪陵地区页岩储层在水力压裂前期井口注入压力过高的问题,开展了基于支撑剂段塞技术的降阻实验研究。采用前期自研的射流装置和靶件,建立了一套利用支撑剂段塞打磨孔眼的近井裂缝降阻的物理模拟实验方法,并进行了正交实验。针对现场需要,建立了首尾压降与平均压降速率两个参数对实验结果进行表征,并据此进行了分析。结果表明,各因素对降阻效果的影响由大到小排序为:砂比、粒径、段塞组数(打磨时间)、支撑剂类型;石英砂降阻效果优于陶粒,降阻效果随着支撑剂粒径变粗、砂比的增加而增加,随着打磨时间的延长先减小后增大。基于正交实验结果,筛选出了一组支撑剂类型为石英砂,粒径为40/70目,砂比为9 %,打磨时间为9 min的最佳作业参数,此时获得压降速率0.439 MPa/min,首尾压降1.04 MPa的最佳降低摩阻效果。该实验研究为页岩储层水力压裂的施工设计提供了一定的参考。

本文引用格式

杨兆中 , 高晨轩 , 李小刚 , 刘觐瑄 , 廖梓佳 . 前置液阶段的支撑剂段塞降低页岩储层压裂摩阻实验研究[J]. 油气藏评价与开发, 2020 , 10(1) : 77 -83 . DOI: 10.13809/j.cnki.cn32-1825/te.2020.01.012

Abstract

In order to solve the problem that the injection pressure of shale reservoir in Fuling area is too high in the early stage of hydraulic fracturing, researches on the resistance reduction based on proppant slug technology was carried out. By using the previous self-developed jet device and target, a set of physical simulation method for reducing fracture resistance in near well by grinding perforation with proppant slug was established and the orthogonal experiment was carried out. For the on-site needs, fore-tail pressure drop and average pressure drop rate are established to characterize the experimental results, and then analyzed accordingly. The results show that the influence of various factors on the resistance reduction effect from large to small is in the following orders: sand ratio, particle size, number of slugs(grinding time) and proppant type. The effect of reducing resistance of quartz sand is better than that of ceramsite. Drag reduction increases with the thickening of proppant particle size and the increase of sand ratio, and decreases at first and then increases with the prolongation of grinding time. Based on the results of orthogonal experiment, the optimal operating parameters of quartz sand with particle size of 40/70 mesh, sand ratio of 9 % and grinding time of 9 min are selected. On this condition, the optimal friction reduction effect of pressure drop rate of 0.439 MPa/min and head-tail pressure drop of 1.04 MPa are obtained. The experimental study provides a certain reference for the construction design of hydraulic fracturing of shale reservoir.

参考文献

[1] CRUMP J B, CONWAY M W . Effects of perforation-entry friction on bottomhole treating analysis[J]. Journal of Petroleum Technology, 1988,40(8):1041-1048.
[2] LORD D L. Study of perforation friction pressure employing a large-scale fracturing flow simulator[C]// paper SPE-28508-MS presented at the SPE Annual Technical Conference and Exhibition, 25-28 September 1994, New Orleans, Louisiana, USA.
[3] 陈志雄 . 斜井压裂砂堵原因分析及解决办法[J]. 油气井测试, 2003,12(3):36-37.
[3] CHEN Z X . The sand slug analysis and resolving method during fracturing in slant well[J]. Well Testing, 2003,12(3):36-37.
[4] SMITH C G, KHIAT S, AL-BADRAOUI D. An effective technique to reduce bottomhole friction pressure during hydraulic fracturing treatments[C]// paper SPE-112422-MS presented at the SPE International Symposium and Exhibition on Formation Damage Control, 13-15 February 2008, Lafayette, Louisiana, USA.
[5] 郭大立, 计勇, 许江文 , 等. 分析近井筒效应的新模型及方法[J]. 西南石油大学学报(自然科学版), 2012,34(5):177-182.
[5] GUO D L, JI Y, XU J W , et al. Research on the new model and method of analyzing near-wellbore effects[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2012,34(5):177-182.
[6] 龚迪光, 曲占庆, 郭天魁 , 等. 径向井水力压裂摩阻影响因素与计算公式[J]. 钻井液与完井液, 2016,33(3):102-106.
[6] GONG D G, QU Z Q, GUO T K , et al. Factors affecting friction loss of hydraulic fracturing in ultra-short radius radial wells and the calculating equation thereof[J]. Drilling Fluid & Completion Fluid, 2016,33(3):102-106.
[7] LONG G B, LIU S X, XU G S , et al. A perforation-erosion model for hydraulic-fracturing applications[J]. SPE Production & Operations, 2018 , 33(4):770-783.
[8] 幸雪松, 陈彬, 张彬奇 , 等. 渤海套管井多层压裂充填管柱沿程摩阻修正与应用[J]. 钻采工艺, 2019,42(5):49-51.
[8] XING X S, CHEN B, ZHANG B Q , et al. Friction drag correction for multi fracturing-gravel packing string used in cased holes at Bohai[J]. Drilling & Production Technology, 2019,42(5):49-51.
[9] 周仲建, 于世虎, 张晓虎 . 页岩气用复合增效压裂液的研究与应用[J]. 钻采工艺, 2019,42(4):89-92.
[9] ZHOU Z J, YU S H, ZHANG X H . R & D of composite synergistic fracturing fluid for shale gas and application[J]. Drilling & Production Technology, 2019,42(4):89-92.
[10] 梁兵, 郭建春, 党勇杰 , 等. 水力压裂过程中近井摩阻分析[J]. 石油地质与工程, 2006,20(1):74-75.
[10] LIANG B, GUO J C, DANG Y J , et al. An analysis of entry friction during hydraulic fracturing[J]. Henan Petroleum, 2006,20(1):74-78.
[11] 宋燕高, 赵素惠, 王兴文 , 等. 深层气藏压裂改造降低施工摩阻技术[J]. 特种油气藏, 2012,19(2):123-125.
[11] SONG Y G, ZHAO S H, WANG X W , et al. Friction resistance reduction technology for fracturing deep gas reservoirs[J]. Special Oil & Gas Reservoirs, 2012,19(2):123-125.
[12] 刘炜, 刘觐瑄, 华继军 , 等. 水力压裂摩阻类型及降阻措施[J]. 石化技术, 2019,26(1):69.
[12] LIU W, LIU J X, HUA J J , et al. Friction types of hydraulic fracturing and measures for reducing friction[J]. Petrochemical Industry Technology, 2019,26(1):69.
[13] 彭鹏 . 煤层气水平井水力喷射工艺的室内研究[D]. 成都:西南石油大学, 2016.
[13] PENG P . Laboratory study on horizontal well hydraulic spraying technology of coalbed methane[D]. Chengdu: Southwest Petroleum University, 2016
[14] 张建涛, 陈小新, 潘卫东 , 等. 水力压裂中近井筒效应分析及支撑剂段塞技术在中原油田的应用[J]. 钻采工艺, 2004,27(5):37-39.
[14] ZHANG J T, CHEN X X, PAN W D , et al. Near-wellbore effects analysis in hydraulic fracturing and applications of proppant slugs technique in Zhongyuan Oilfield[J]. Drilling & Production Technology, 2004,27(5):37-39.
[15] 师斌斌, 薛政, 马晓云 , 等. 页岩气水平井体积压裂技术研究进展及展望[J]. 中外能源, 2017,22(6):41-49.
[15] SHI B B, XUE Z, MA X Y , et al. Review and preview of stimulated reservoir volume technology of horizontal wells for shale gas[J]. Sino-Global Energy, 2017,22(6):41-49.
[16] 李根生 . 水力喷射压裂理论与应用[M]. 北京: 科学出版社, 2011.
[16] LI G S. Theory and application of hydrajet-fracturing[M]. Beijing: Science Press, 2011.
[17] 张永利, 于鸿椿, 何翔 . 磨料两相射流理论及在油井增产中的应用[M]. 沈阳: 东北大学出版社, 2010.
[17] ZHANG Y L, YU H C, HE X. Abrasive two-phase jet theory and its application in oil well stimulation[M]. Shenyang: Northeastern University Press, 2010.
文章导航

/