常规油气

一种新型自支撑压裂液体系实验研究

  • 赵立强 ,
  • 陈一鑫 ,
  • 刘平礼 ,
  • 李年银 ,
  • 罗志锋 ,
  • 杜娟
展开
  • 西南石油大学油气藏地质及开发工程国家重点实验室,四川 成都 610500
赵立强(1957—),男,硕士,教授,从事油气田开发研究。通讯地址:四川省成都市新都区新都大道8号西南石油大学,邮政编码:610500。E-mail:zhaolq.vip.163.com

收稿日期: 2019-07-09

  网络出版日期: 2020-04-28

Experimental study on a new type of self-propping fracturing fluid

  • Liqiang ZHAO ,
  • Yinxin CHEN ,
  • Pingli LIU ,
  • Nianyin LI ,
  • Zhifeng LUO ,
  • Juan DU
Expand
  • State Key Laboratory of Oil and Gas Reservoir Geology and Exploration, Southwest Petroleum University, Chengdu, Sichuan 610500, China

Received date: 2019-07-09

  Online published: 2020-04-28

摘要

水力压裂是油气藏增产改造的重要技术手段,已广泛应用于国内外各大油田生产中。通过对压裂液体系进行大量文献调研后发现,目前压裂液体系的各种改进,主要围绕着“携砂”在进行。提出了一种新型自支撑压裂液体系,该液体体系完全摆脱了“携砂”的概念,在压裂液泵注过程中完全不携带固体支撑剂,而是将压裂液与支撑剂结合为一体,当液体到达目的层后通过地层温度控制由液相转化为固相支撑压裂裂缝。实验获得的自支撑压裂液体系能够在85 °C、30 min内形成具有一定圆球度和强度的支撑固体。液体体系的黏度上限为45.58 mPa·s,具有良好的注入性和稳定性。液体相变后形成的固体支撑剂密度为1.07 g/cm 3,分选系数为1.41,主要粒径为20~40目和40~70目,其破碎率分别为4.7 %和8.75 %。

本文引用格式

赵立强 , 陈一鑫 , 刘平礼 , 李年银 , 罗志锋 , 杜娟 . 一种新型自支撑压裂液体系实验研究[J]. 油气藏评价与开发, 2020 , 10(2) : 121 -127 . DOI: 10.13809/j.cnki.cn32-1825/te.2020.02.021

Abstract

Hydraulic fracturing is an important technical means for stimulation and transformation of oil and gas reservoirs, and has been widely used in the production of major oil fields at home and abroad. After studying a large number of literature research on the fracturing fluid system, it is found that various improvements of the current fracturing fluid system are mainly around “carrying sand”. However, in this paper, a new type of self-supporting fracturing fluid system is innovatively put forward, which completely gets rid of the concept of "carrying sand". In the process of fracturing fluid pumping, there is no solid proppant at all, but the fracturing fluid is combined with the proppant as a whole. When the fluid reaches the target layer, it is affected by the formation temperature and transformed from liquid phase to solid-state to prop up the fracturing fractures. The obtained self-supporting fracturing fluid system can form supporting solids with certain sphericity and strength at 85 ℃ and in 30 minutes. The upper limit of liquid system viscosity is 45.58 mPa·s, bringing the system good injectivity and stability. The density of the solid-state proppant is 1.07 g/cm3, the separation coefficient is 1.41, the main particle size range is 20~40 and 40~70 mesh, and the crushing rate is 4.7 % and 8.75 %, respectively.

参考文献

[1] 马新仿, 张士诚 . 水力压裂技术的发展现状[J]. 石油地质与工程, 2002,16(1):44-47.
[1] MA X F, ZHANG S C . Development status of hydraulic fracturing technology[J]. Petroleum Geology and Engineering, 2002,16(1):44-47.
[2] 姜瑞忠, 蒋廷学, 汪永利 , 等. 水力压裂技术的近期发展及展望[J]. 石油钻采工艺, 2004,26(4):52-57.
[2] JIANG R Z, JIANG T X, WANG Y L , et al. Recent development and prospect of hydraulic fracturing technology[J]. Oil Drilling and Production Technology, 2004,26(4):52-57.
[3] CHANG F F, BERGER P D, LEE C H . In-situ formation of proppant and highly permeable blocks for hydraulic fracturing[C]// paper SPE-173328-MS presented at the SPE Hydraulic Fracturing Technology Conference, 3-5 February 2015, The Woodlands, Texas, USA.
[4] LIANG F, SAYED M, AL-MUNTASHERI G A , et al. A comprehensive review on proppant technologies[J]. Petroleum, 2016,2(1):26-39.
[5] CHEN D, YE Z, PAN Z , et al. A permeability model for the hydraulic fracture filled with proppant packs under combined effect of compaction and embedment[J]. Journal of Petroleum Science and Engineering, 2016,149:428-435.
[6] FAN T G, ZHANG G Q . Laboratory investigation of hydraulic fracture networks in formations with continuous orthogonal fractures[J]. Energy, 2014,74:164-173.
[7] 罗志锋, 陈一鑫, 赵立强 , 等. 高速通道压裂通道率影响因素实验研究[J]. 油气藏评价与开发, 2017,7(2):58-64.
[7] LUO Z F, CHEN Y X, ZHAO L Q , et al. Research on the influencing factors of channel rate for channel fracturing[J]. Reservoir Evaluation and Development, 2017,7(2):58-64.
[8] 陈一鑫 . 一种新型自支撑压裂技术实验研究[D]. 西南石油大学, 2017.
[8] CHEN Y X . Experimental study on a new type of self-propping fracturing technology[D]. Southwest Petroleum University, 2017.
[9] TERECH P, WEISS R G . Low molecular mass gelators of organic liquids and the properties of their gels[J]. Chemical Reviews, 1997,98(8):3133-3160.
[10] PIEPENBROCK M O M, LLOYD G O, CLARKE N , et al. Metal-and anion-binding supramolecular gels[J]. Chemical Reviews, 2009,110(4):1960-2004.
[11] FERNáNDEZ J E . Materials for aesthetic, energy-efficient, and self-diagnostic buildings[J]. Science, 2007,315(5820):1807-1810.
[12] SANGEETHA N M, MAITRA U . Supramolecular gels: Functions and uses[J]. Chemical Society Reviews, 2005,34(10):821-836.
[13] GEORGE M, WEISS R G . Low molecular-mass gelators with diyne functional groups and their unpolymerized and polymerized gel assemblies[J]. Chemistry of Materials, 2003,15(15):2879-2888.
[14] KUROIWA K, SHIBATA T, TAKADA A , et al. Heat-set gel-like networks of lipophilic Co(II) triazole complexes in organic media and their thermochromic structural transitions[J]. Journal of the American Chemical Society, 2004,126(7):2016-2021.
[15] ZHANG J J, OUYANG L C, ZHU D , et al. Experimental and numerical studies of reduced fracture conductivity due to proppant embedment in the shale reservoir[J]. Journal of Petroleum Science and Engineering, 2015,130:37-45.
文章导航

/