油气藏评价与开发 >
2020 , Vol. 10 >Issue 2: 54 - 59
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2020.02.009
断溶体油藏仿底水与仿压裂注水方法和应用效果研究
收稿日期: 2019-09-25
网络出版日期: 2020-04-28
基金资助
“十三五”国家科技重大专项“塔里木盆地碳酸盐岩油气田提高采收率关键技术示范工程”(2016ZX05053)
Research and application of water injection by imitating bottom water and fracturing in fault-karst carbonate reservoirs
Received date: 2019-09-25
Online published: 2020-04-28
断溶体油藏是碳酸盐岩缝洞型油气藏开发的新对象,通过对开发现象与注水机理的深入研究,针对塔河油田开发中常见的3种典型的注水波及效率低的问题:井储关系匹配差、常规注水形成类水锥、多个缝洞组合结构,提出了一种更能适应缝洞体井储关系、不同展布形态和复杂内部结构的仿底水注水方法,以此来提高注水波及率,这相较于常规注水替油,注水有效率从60 %上升至75 %。针对井眼与缝洞体之间3种常见的注水动用通道差的开发问题:井眼与缝洞体存在偏移、井眼与缝洞体没有建立有效动用通道、井控缝洞体采出程度高而远井有未动用缝洞体,提出了一种更加全面的建立缝网动用体系的低成本仿压裂注水方法,有效扩大了井控动用储量,平均单井产能增油幅度为11 t/d。通过仿底水与仿压裂注水方法应用实践显示:提高注水总量和注水压力,断溶体油藏注水有效率大幅提升,注水增产效果得到明显改善。
刘培亮 , 李成刚 , 蒋林 . 断溶体油藏仿底水与仿压裂注水方法和应用效果研究[J]. 油气藏评价与开发, 2020 , 10(2) : 54 -59 . DOI: 10.13809/j.cnki.cn32-1825/te.2020.02.009
Fault-karst carbonate reservoir is a new object for oil and gas exploration in carbonate fractured-vuggy reservoirs. Based on the further study of development dynamics and water flooding mechanism, and in order to solve three typical problems in the development of Tahe oilfield, which are the poor matching of well storage relation, the water-like coning formed by conventional water injection, and the combination of multiple fractures and caves, an injection method by imitating bottom-water is proposed, which is more suitable for the well-reservoir relation, different distribution patterns and complex internal structure of the fracture and vug. In this way, the water flooding sweep rate is increased, and efficiency of water injected increased from 60% of conventional water flooding to 75% of simulated bottom water flooding. Three problems of poor water injection channel between borehole and fracture-vug are common, that is, there is an offset between the fracture and vug, no effective channels are established for the borehole and fracture-vug, and the reserve recovery degree of well-controlled fracture-vug is high but the untapped fracture-vug exist in far wells. A low-cost water injection method by imitating fracturing for establishing effectively fracture network producing system is proposed, which can effectively expand well controlled producing reserves, and the average productivity per well increase by 22 t/d. Practices show that these two technologies can increase the total water injection volume and water injection pressure, make the water injection efficiency improved greatly, so as to improve the effect of water injection and stimulation obviously.
[1] | 鲁新便, 胡文革, 汪彦 , 等. 塔河地区碳酸盐岩断溶体油藏特征与开发实践[J]. 石油与天然气地质, 2015,36(3):347-355. |
[1] | LU X B, HU W G, WANG Y , et al. Characteristics and development practice of fault-karst carbonate reservoirs in Tahe area, Tarim Basin[J]. Oil and Gas Geology, 2015,36(3):347-355. |
[2] | LU X B, WANG Y, TIAN F , et al. New insights into the carbonate karstic fault system and reservoir formation in the southern Tahe area of the Tarim Basin[J]. Marine and Petroleum Geology, 2017,86:587-605. |
[3] | 吕心瑞, 李红凯, 魏荷花 , 等. 碳酸盐岩储层多尺度缝洞体分类表征——以塔河油田S80单元奥陶系油藏为例[J]. 石油与天然气地质, 2017,38(4):813-821. |
[3] | LYU X R, LI H K, WEI H H , et al. Classification and characterization method for multi-scale fractured-vuggy reservoir zones in carbonate reservoirs: An example from Ordovician reservoirs in Tahe oilfield S80 unit[J]. Oil & Gas Geology, 2017,38(4):813-821. |
[4] | 鲁新便, 杨敏, 汪彦 , 等. 塔里木盆地北部“层控”与“断控”型油藏特征——以塔河油田奥陶系油藏为例[J]. 石油实验地质, 2018,40(4):461-469. |
[4] | LU X B, YANG M, WANG Y , et al. Geological characteristics of ‘strata-bound’ and ‘fault-controlled’ reservoirs in the northern Tarim Basin: taking the Ordovician reservoirs in the Tahe Oil Field as an example[J]. Petroleum Geology & Experiment, 2018,40(4):461-469. |
[5] | 焦方正 . 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景[J]. 石油与天然气地质, 2018,39(2):207-216. |
[5] | JIAO F Z . Significance and prospect of ultra-deep carbonate fault-karst reservoirs in Shunbei area, Tarim Basin[J]. Oil & Gas Geology, 2018,39(2):207-216. |
[6] | 赵锐, 赵腾, 李慧莉 , 等. 塔里木盆地顺北油气田断控缝洞型储层特征与主控因素[J]. 特种油气藏, 2019,26(5):8-13. |
[6] | ZHAO R, ZHAO T, LI H L , et al. Fault-controlled fracture-cavity reservoir characterization and main-controlling factors in the Shunbei hydrocarbon field of Tarim Basin[J]. Special Oil & Gas Reservoirs, 2019,26(5):8-13. |
[7] | 鲁新便, 荣元帅, 李小波 , 等. 碳酸盐岩缝洞型油藏注采井网构建及开发意义——以塔河油田为例[J]. 石油与天然气地质, 2017,38(4):658-664. |
[7] | LU X B, RONG Y S, LI X B , et al. Construction of injection-production well pattern in fractured-vuggy carbonate reservoir and its development significance: A case study from Tahe oilfield in Tarim Basin[J]. Oil & Gas Geology, 2017,38(4):658-664. |
[8] | 王金锋 . 塔河油田缝洞型储层中洞穴充填程度半定量化分析[J]. 石油地质与工程, 2017,31(2):44-47. |
[8] | WANG J F . Half quantitative analysis of filling degree in caved type reservoir of fractured-vuggy reservoirs in Tahe oilfield[J]. Petroleum Geology & Engineering, 2017,31(2):44-47 |
[9] | 张娟, 鲍典, 杨敏 , 等. 塔河油田西部古暗河缝洞结构特征及控制因素[J]. 油气地质与采收率, 2018,25(4):33-39. |
[9] | ZHANG J, BAO D, YANG M , et al. Analysis on fracture-cave structure characteristics and its controlling factor of palaeo-subterranean rivers in the western Tahe Oilfield[J]. Petroleum Geology and Recovery Efficiency, 2018,25(4):33-39. |
[10] | 田亮, 李佳玲, 袁飞宇 , 等. 塔河油田碳酸盐岩缝洞型油藏定量化注水技术研究[J]. 石油地质与工程, 2018,32(2):86-89. |
[10] | TIAN L, LI J L, YUAN F Y , et al. Quantitative water injection of fractured-cavity oil reservoir in carbonate rocks in Tahe oilfield[J]. Petroleum Geology & Engineering, 2018,32(2):86-89. |
[11] | 刘遥, 荣元帅, 杨敏 . 碳酸盐岩缝洞型油藏缝洞单元储量精细分类评价[J]. 石油实验地质, 2018,40(3):431-438. |
[11] | LIU Y, RONG Y S, YANG M . Detailed classification and evaluation of reserves in fracture-cavity units for carbonate fracture-cavity reservoirs[J]. Petroleum Geology & Experiment, 2018,40(3):431-438. |
[12] | 李倩, 狄帮让, 魏建新 . 基于稀疏约束反演谱分解的缝洞储层叠后数据去噪应用效果分析[J]. 石油物探, 2017,56(5):684-693. |
[12] | LI Q, DI B R, WEI J X , et al. Application of denoising method based on sparse constrained inverse spectral decomposition in poststack seismic data of cave-fractured reservoirs[J]. Geophysical Prospecting for Petroleum, 2017,56(5):684-693. |
[13] | 肖阳, 何文, 罗慎超 , 等. 缝洞单元类型快速识别方法[J]. 油气地质与采收率, 2018,25(6):120-126. |
[13] | XIAO Y, HE W, LUO S C , et al. A fast recognition method of fractured-vuggy unit type[J]. Petroleum Geology and Recovery Efficiency, 2018,25(6):120-126. |
[14] | 郑松青, 崔书岳, 牟雷 . 缝洞型油藏物质平衡方程及驱动能量分析[J]. 特种油气藏, 2018,25(1):64-67. |
[14] | ZHENG S Q, CUI S Y, MU L . Material balance equation and driving energy analysis of fracture-cave oil reservoir[J]. Special Oil & Gas Reservoirs, 2018,25(1):64-67. |
[15] | 尹洪军, 邢翠巧, 计秉玉 , 等. 大尺度溶洞发育的缝洞型油藏试井解释模型研究[J]. 特种油气藏, 2018,25(5):84-88. |
[15] | YIN H J, XING C Q, JI B Y , et al. Well test interpretation model for fracture-cavity reservoir with well-developed large-scale caves[J]. Special Oil & Gas Reservoirs, 2018,25(5):84-88. |
[16] | 宋红伟, 张智, 任文博 . 缝洞型碳酸盐岩油藏物质平衡法计算储量探讨[J]. 天然气勘探与开发, 2012,35(1):32-35. |
[16] | SONG H W, ZHANG Z, REN W B . Reserves calculation of fractured-cavity carbonate reservoirs by material balance method[J]. Natural Gas Exploration and Development, 2012,35(1):32-35. |
[17] | 荣元帅, 胡文革, 蒲万芬 , 等. 塔河油田碳酸盐岩油藏缝洞分隔性研究[J]. 石油实验地质, 2015,37(5):599-605. |
[17] | RONG Y S, HU W G, PU W F , et al. Separation of fractures and cavities in carbonate reservoirs in the Tahe Oil Field[J]. Petroleum Geology & Experiment, 2015,37(5):599-605. |
[18] | 刘玉章, 杨立峰, 王欣 , 等. 页岩气水力压裂裂缝缝网完善程度概论[J]. 天然气工业, 2017,37(7):34-39. |
[18] | LIU Y Z, YANG L F, WANG X , et al. Introduction to the completion degree of hydraulic fracture networks in shale gas reservoirs[J]. Natural Gas Industry, 2017,37(7):34-39. |
[19] | 王福友 . 页岩气井水力压裂技术的研究进展[J]. 化工设计通讯, 2017,43(5):72. |
[19] | WANG F Y . Research progress of hydraulic fracturing technology for shale gas wells[J]. Chemical Engineering Design Communication, 2017,43(5):72. |
[20] | 仝少凯, 高德利 . 水力压裂基础研究进展及发展建议[J]. 石油钻采工艺, 2019,41(1):101-115. |
[20] | TONG S K, GAO D L . Basic research progress and development suggestions on hydraulic fracturing[J]. Oil Drilling & Production Technology, 2019,41(1):101-115. |
/
〈 | 〉 |