油气藏评价与开发 >
2020 , Vol. 10 >Issue 2: 76 - 82
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2020.02.013
考虑天然微裂缝的酸蚀蚓孔扩展数值模拟研究
收稿日期: 2020-01-31
网络出版日期: 2020-04-28
基金资助
国家科技重大专项“中亚和中东地区复杂碳酸盐岩油气藏采油采气关键技术研究与应用”(2017ZX05030-005);国家自然科学基金项目“缝洞型碳酸盐岩靶向酸压复杂裂缝扩展机理及调控方法研究”(51974264)
Numerical simulation of wormhole propagation considering natural micro-fractures
Received date: 2020-01-31
Online published: 2020-04-28
碳酸盐岩储层天然微裂缝一般较为发育,很多学者在对碳酸盐岩酸蚀蚓孔扩展进行模拟研究时,都未考虑微裂缝的分布及产状的随机性对模拟结果的影响。天然微裂缝的存在对孔隙度的改变非常小,但其对于模拟结果的影响很大。基于双重尺度蚓孔扩展模型,耦合Monte Carlo法产生的具有一定统计学分布规律的天然裂缝模型,建立考虑天然微裂缝存在的酸蚀蚓孔扩展数学模型。通过改变微裂缝方位角、微裂缝密度、微裂缝长度、微裂缝连通性等参数,研究了天然微裂缝的空间分布对蚓孔扩展的影响。研究发现,天然微裂缝的存在会降低酸液突破岩心孔隙体积,很大程度上影响了最佳注入速度与酸液用量的选择。高密度的天然微裂缝可以形成复杂的弥散性裂缝网络,起到增渗、增产的效果。增加微裂缝长度可以降低酸液突破孔隙体积,对污染带进行快速穿透。在微裂缝连通性较好的岩心中,蚓孔在扩展过程中会连通相邻微裂缝,增加岩心的导流能力。
赵立强 , 王润宇 , 刘平礼 , 梁冲 , 邹宏岚 , 罗志锋 . 考虑天然微裂缝的酸蚀蚓孔扩展数值模拟研究[J]. 油气藏评价与开发, 2020 , 10(2) : 76 -82 . DOI: 10.13809/j.cnki.cn32-1825/te.2020.02.013
Natural micro-fractures in carbonate reservoirs are generally developed and have little effect on porosity, but has a great influence on the simulation results. In previous studies, the effect of micro-fractures on the growth of wormholes has not been studied in detail. Based on the double-scale wormhole propagation model, and the natural fracture model with a certain statistical distribution law produced by coupling of the Monte Carlo method, the acid wormhole propagation mathematical model considering the existing of natural fractures is established. By adjusting the parameters such as azimuth, density, length and connectivity of micro-fractures, the effects of its spatial distribution on wormhole propagation is studied. It is found that the existence of natural micro-fractures will reduce the pore volume of acid invasion into the cores, which greatly affects the optimal injection speed and acid-liquid dosage. Natural micro-fractures with high density can form complex dispersion fracture networks, increasing the permeability and production obviously. Increasing the length of micro-fractures can reduce the pore volume of acid invasion, and penetrate the damage zone rapidly. In the cores contain micro-fractures with better conductivity, the wormhole will connect the adjacent micro-fractures in the process of propagation, so as to increase the core's conductivity.
[1] | HUNG K M, HILL A D, SEPEHRNOORI K . A mechanistic model of wormhole growth in carbonate matrix acidizing and acid fracturing[J]. Journal of Petroleum Technology, 1989,41(1):59-66 |
[2] | GDANSKI R . A fundamentally new model of acid wormholing in carbonate[C]// paper SPE-54719-MS presented at the SPE European Formation Damage Conference, 31 May-1 June 1999, The Hague, Netherlands. |
[3] | FREDD C N, FOGLER H S . Influence of transport and reaction on wormhole formation in carbonate porous media[J]. AIChE Journal, 1998,44(9):1933-1949. |
[4] | KANG Q J, ZHANG D X, CHEN S Y , et al. Lattice Boltzmann simulation of chemical dissolution in porous media[J]. Physical Review E, 2002,65(3):1-8. |
[5] | GOLFIER F, ZARCONE C, BAZIN B , et al. On the ability of a Darcy scale model to capture wormhole formation during the dissolution of a porous medium[J]. Journal of Fluid Mechanics, 2001,457:213-254. |
[6] | 李德同, 文世鹏 . 储层构造裂缝的定量描述和预测方法[J]. 石油大学学报: 自然科学版, 1996,20(4):6-10. |
[6] | LI D T, WEN S P . Methods of quantitative description and prediction for structural fracture of subsurface reservoir[J]. Journal of the University of Petroleum, China(Edition of Natural Science), 1996,20(4):6-10. |
[7] | 吕心瑞, 李红凯, 魏荷花 , 等. 碳酸盐岩储层多尺度缝洞体分类表征——以塔河油田S80单元奥陶系油藏为例[J]. 石油与天然气地质, 2017,38(4):813-821. |
[7] | LYU X R, LI H K, WEI H H , et al. Classification and characterization method for multi-scale fractured-vuggy reservoir zones in carbonate reservoirs: An example from Ordovician reservoirs in Tahe oilfield S80 unit[J]. Oil & Gas Geology, 2017,38(4):813-821. |
[8] | 刘遥, 荣元帅, 杨敏 . 碳酸盐岩缝洞型油藏缝洞单元储量精细分类评价[J]. 石油实验地质, 2018,40(3):431-438. |
[8] | LIU Y, RONG Y S, YANG M . Detailed classification and evaluation of reserves in fracture-cavity units for carbonate fracture-cavity reservoirs[J]. Petroleum Geology & Experiment, 2018,40(3):431-438. |
[9] | 金强, 田飞, 张宏方 . 塔河油田岩溶型碳酸盐岩缝洞单元综合评价[J]. 石油实验地质, 2015,37(3):272-279. |
[9] | JIN Q, TIAN F, ZHANG H F . Comprehensive evaluation of fracture-cave units in karst carbonates in Tahe Oilfield, Tarim Basin[J]. Petroleum Geology & Experiment, 2015,37(3):272-279. |
[10] | 肖阳, 何文, 罗慎超 , 等. 缝洞单元类型快速识别方法[J]. 油气地质与采收率, 2018,25(6):120-126. |
[10] | XIAO Y, HE W, LUO S C , et al. A fast recognition method of fractured-vuggy unit type[J]. Petroleum Geology and Recovery Efficiency, 2018,25(6):120-126. |
[11] | 李勇明, 郭建春, 赵金洲 , 等. 裂缝性油藏酸液滤失模型研究[J]. 西南石油学院学报, 2004,26,(2):50-53. |
[11] | LI Y M, GUO J C, ZHAO J Z , et al. Study on acid leak-off in naturally-fractured reservoirs[J]. Journal of Southwest Petroleum Institute, 2004,26(2):50-53. |
[12] | IZGEC O, ZHU D, HILL A D . Numerical and experimental investigation of acid wormholing during acidization of vuggy carbonate rocks[J]. Journal of Petroleum Science and Engineering, 2010,74(1):51-66. |
[13] | 柳明, 张士诚, 牟建业 . 碳酸盐岩酸化径向蚓孔扩展形态研究[J]. 油气地质与采收率, 2012,19(2):106-110. |
[13] | LIU M, ZHANG S C, MOU J Y . Dissolution pattern of radial wormhole model in carbonate acidizing[J]. Petroleum Geology and Recovery Efficiency, 2012,19(2):106-110. |
[14] | 牟建业, 李双明, 赵鑫 , 等. 基于真实孔隙空间分布的酸蚀蚓孔扩展规律数值模拟研究[J]. 科学技术与工程, 2014,14(35):40-46. |
[14] | MOU J Y, LI S M, ZHAO X , et al. Modeling wormhole propataiton behavior based on real pore spatial distributions[J]. Science Technology and Engineering, 2014,14(35):40-46. |
[15] | 罗源 . 裂缝性碳酸盐岩酸化模拟研究[D]. 成都:西南石油大学, 2015. |
[15] | LUO Y . Research on the simulation of acid stimulation in fissured carbonate reservoir[D]. Chengdu: Southwest Petroleum University, 2015. |
[16] | AKANNI O O, NASR-EL-DIN H A . Modeling of wormhole propagation during matrix acidizing of carbonate reservoirs by organic acids and chelating agents[C]// paper SPE-181348-MS presented at the SPE Annual Technical Conference and Exhibition, 26-28 September 2016, Dubai, UAE. |
[17] | 李勇明, 廖毅, 彭瑀 , 等. 非均质碳酸盐岩水平井酸化数值模拟与分析[J]. 油气藏评价与开发, 2016,6(4):53-58. |
[17] | LI Y M, LIAO Y, PENG Y , et al. Numerical stimulation and analysis of horizontal well acidizing in heterogeneous carbonate rocks[J]. Reservoir Evaluation and Development, 2016,6(4):53-58. |
[18] | 薛衡, 赵立强, 刘平礼 , 等. 碳酸盐岩多尺度三维酸蚀蚓孔立体延伸动态模拟[J]. 石油与天然气地质, 2016,37(5):792-798. |
[18] | XUE H, ZHAO L Q, LIU P L , et al. Dynamic simulation of 3-D multiple-scale wormhole propagation in carbonate rocks[J]. Oil & Gas Geology, 2016,37(5):792-798. |
[19] | 乐宏, 刘飞, 薛衡 , 等. 四川盆地下寒武统龙王庙组气藏转向酸酸化模拟及其应用[J]. 天然气工业, 2017,37(10):46-53. |
[19] | YUE H, LIU F, XUE H , et al. Numerical simulation and field application of diverting acid acidizing in the Lower Cambrian Longwangmiao Fm gas reservoirs in the Sichuan Basin[J]. Natural Gas Industry, 2017,37(10):46-53. |
[20] | QIN G, CHEN R, GONG B , et al. Data-driven Monte Carlo simulations in estimating the stimulated reservoir volume (SRV) hydraulic fracturing treatments[C]// paper SPE-154537-MS presented at the SPE Europec/EAGE Annual Conference, 4-7 June 2012, Copenhagen, Denmark. |
[21] | 杨坚, 吕心瑞, 李江龙 , 等. 裂缝性油藏离散裂缝网络随机生成及数值模拟[J]. 油气地质与采收率, 2011(6):74-77. |
[21] | YANG J, LYU X R, LI J L , et al. Study on discrete fracture network random generation and numerical simulation of fractured reservoir[J]. Petroleum Geology and Recovery Efficiency, 2011,18(6):74-77. |
[22] | 薛衡, 黄祖熹, 赵立强 , 等. 碳酸盐岩水平井酸化模式及工艺参数优化研究[J]. 油气藏评价与开发, 2018,8(3):66-72. |
[22] | XUE H, HUANG Z X, ZHAO L Q , et al. Optimization study on horizontal well acidizing modes and injection parameters in carbonate reservoir[J]. Reservoir Evaluation and Development, 2018,8(3):66-72. |
[23] | KALIA N, BALAKOTAIAH V . Modeling and analysis of wormhole formation in reactive dissolution of carbonate rocks[J]. Chemical Engineering Science, 2007,62(4):919-928. |
[24] | CIVAN F . Scale effect on porosity and permeability: Kinetics, model, and correlation[J]. AIChE Journal, 2001,47(2):271-287. |
[25] | BALAKOTAIAH V, WEST D H . Shape normalization and analysis of the mass transfer controlled regime in catalytic monoliths[J]. Chemical Engineering Science, 2002,57(8):1269-1286. |
[26] | LI M, TANG Y B, BERNABE Y , et al. Pore connectivity, electrical conductivity, and partial water saturation: Network simulations[J]. Journal of Geophysical Research. Solid Earth, 2015,120(6):4055-4068. |
/
〈 | 〉 |