综合研究

延川南煤层气井合理配产及其排采控制

  • 赵兴龙
展开
  • 中国石化华东油气分公司临汾煤层气分公司,山西 临汾 041000
赵兴龙(1984—),男,硕士,工程师,从事非常规资源勘探开发方面研究。通讯地址:山西省临汾市尧都区华洲路九星佳苑临汾煤层气分公司,邮政编码:041000。E-mail:zhaoxl008421@163.com

收稿日期: 2019-12-24

  网络出版日期: 2020-07-03

基金资助

国家自然科学基金“煤体结构制约下的煤层气渗流机理研究”(41802180);国家自然科学基金“深部煤层气系统及其能量动态平衡机理研究”(41530314)

Reasonable production allocation and drainage control of coalbed methane wells in South Yanchuan CBM field

  • Xinglong ZHAO
Expand
  • Linfen Coalbed Methane Company, Sinopec East China Oil and Gas Company, Linfen, Shanxi 041000, China

Received date: 2019-12-24

  Online published: 2020-07-03

摘要

为了深入研究煤层气井合理配产及其排采控制方法,延长气井高产稳产期,通过对延川南煤层气田煤层等温吸附特征与气井生产参数进行对比研究,提出了煤层气井合理配产方法,并在现场煤层气井排采参数及动态规律对比分析基础上,以煤储层压力、临界解吸压力、兰氏压力、稳产压力为关键控制节点,将延川南煤层气井排采过程划分为5个阶段,对各阶段排采参数控制进行了研究。结果表明:延川南煤层气田煤层气井井底流压在煤层兰氏压力附近时,产气量达到峰值,煤层气井的稳产气量与峰值产气量,以及稳产流压与兰氏压力之间有较好的线性关系,得出的拟合公式,可以计算各井合理稳产流压和稳产气量。5个排采阶段,分别是快排期、缓慢降压排水期、上产期、产量波动期和稳产期。对于延川南煤层气田,快排期日降井底流压在0.1 MPa左右较为合理,缓慢降压排水期、上产期和产量波动期排采控制非常关键,缓慢降压排水期日降井底流压在0.003 MPa左右,上产期谭坪构造带气井日降井底流压要小于0.005 MPa,万宝山构造带要小于0.01 MPa,产量波动期日降井底流压要控制在0.003 MPa左右。

本文引用格式

赵兴龙 . 延川南煤层气井合理配产及其排采控制[J]. 油气藏评价与开发, 2020 , 10(3) : 115 -120 . DOI: 10.13809/j.cnki.cn32-1825/te.2020.03.018

Abstract

In order to further study the reasonable production allocation and drainage control method, and extend the high and stable production period of CBM wells, the reasonable production allocation is proposed by comparative researches on the isothermal adsorption of coal bed and production parameter of CBM wells in South Yanchuan CBM field. On the basis of the comparative analysis of the parameters and dynamic regulation of coalbed methane drainage on site, and taking coal reservoir pressure, critical desorption pressure, Langmuir pressure and stable production pressure as the key control nodes, the drainage process of CBM wells can be divided into five stages, and then the method of production parameter control during every drainage stage is studied. The result shows that the gas yield peak appears when the bottom hole flowing pressure is at about Langmuir pressure of coal bed in South Yanchuan CBM field. There is a good linear relation between the stable gas production and the peak gas production, as well as that between the stable flowing pressure and the Langmuir pressure. The fitting formula can be used to calculate the reasonable stable flowing pressure and stable yield of each well. The above five stages are fast drainage stage, slowly pressure drop drainage stage, gas yield rising stage, gas yield fluctuation stage, and stable yield stage. For the South Yanchuan CBM field, the reasonable bottom hole flowing pressure drop is about 0.1 MPa/d during the fast drainage stage. The drainage control at slowly pressure drop drainage stage, gas yield rising stage, and gas yield fluctuation stage are very important. The bottom hole flowing pressure drop should be about 0.003 MPa/d during the slowly pressure drop drainage stage, less than 0.005 MPa/d during the gas yield rising stage in Tanping structural belt, less than 0.01 MPa/d in Wanbaoshan structural belt, and about 0.003 MPa/d during the gas yield fluctuation stage.

参考文献

[1] 杨秀春, 李明宅. 煤层气排采动态参数及其相互关系[J]. 煤田地质与勘探, 2008,36(2):19-27.
[1] YANG X C, LI M Z. Dynamic parameters of CBM well drainage and relationship among them[J]. Coal Geology and Exploration, 2008,36(2):19-27.
[2] 闫泊计. 浅析影响煤层气井产量的几个因素[J]. 山西焦煤科技, 2010,34(10):31-33.
[2] YAN B J. Analysis on several factors of influence output in coal bed gas well[J]. Shanxi Coking Coal Science & Technology, 2010,34(10):31-33.
[3] 樊彬, 秦义, 崔金榜, 等. 压降速度对煤层气井产量的影响分析[J]. 中国煤层气, 2010,7(6):20-23.
[3] FAN B, QIN Y, CUI J B, et al. Analysis of the influence of pressure drop velocity on CBM well production[J]. China Coalbed Methane, 2010,7(6):20-23.
[4] 倪小明, 王延斌, 接铭训, 等. 煤层气井排采初期合理排采强度的确定方法[J]. 西南石油大学学报, 2007,29(6):101-104.
[4] NI X M, WANG Y B, JIE M X, et al. Reasonable production intensity of coal-bed methane wells in initial production[J]. Journal of Southwest Petroleum University, 2007,29(6):101-104.
[5] 谢学恒, 樊明珠, 王前阔, 等. 煤层气井排采强度对产气量敏感性的数值模拟[J]. 油气藏评价与开发, 2013,3(5):74-76.
[5] XIE X H, FAN M Z, WANG Q K, et al. Sensitivity numerical simulation of production intensity on the gas production rate of CBM wells[J]. Reservoir Evaluation and Development, 2013,3(5):74-76.
[6] 李金海, 苏现波, 林晓英, 等. 煤层气井排采速率与产能的关系[J]. 煤炭学报, 2009,34(3):376-380.
[6] LI J H, SU X B, LIN X Y, et al. Relationship between discharge rate and productivity of coalbed methane wells[J]. Journal of China Coal Society, 2009,34(3):376-380.
[7] 康永尚, 邓泽, 刘洪林, 等. 我国煤层气井排采工作制度探讨[J]. 天然气地球科学, 2008,19(3):423-426.
[7] KANG Y S, DENG Z, LIU H L, et al. Discussion about the CBM well draining technology[J]. Natural Gas Geoscience, 2008,19(3):423-426.
[8] 康永尚, 赵群, 王红岩, 等. 煤层气井开发效率及排采制度的研究[J]. 天然气工业, 2007,27(7):79-82.
[8] KANG Y S, ZHAO Q, WANG H Y, et al. Developing efficiency and the working system of wells during the de-watering gas production process in coalbed methane reservoirs[J]. Natural Gas Industry, 2007,27(7):79-82.
[9] 饶孟余, 江舒华. 煤层气井排采技术分析[J]. 中国煤层气, 2010,7(1):22-25.
[9] RAO M Y, JIANG S H. Analysis on drainage techniques of coalbed methane well[J]. China Coalbed Methane, 2010,7(1):22-25.
[10] 李仰民, 王立龙, 刘国伟, 等. 煤层气井排采过程中的储层伤害机理研究[J]. 中国煤层气, 2010,7(6):39-47.
[10] LI Y M, WANG L L, LIU G W, et al. Study on coal reservoir damage mechanism in dewatering and extraction process of CBM wells[J]. China Coalbed Methane, 2010,7(6):39-47.
[11] 周叡, 杨经栋, 汪勇, 等. 沁水盆地南部煤层气单井产量影响因素敏感性分析[J]. 中国煤层气, 2016,13(5):22-25.
[11] ZHOU R, YANG J D, WANG Y, et al. Sensitivity analysis on influencing factors of CBM single well production in south Qinshui basin[J]. China Coalbed Methane, 2016,13(5):22-25.
[12] 薛志亮. 沁水盆地南部煤层气问题井原因分析及技术探讨[J]. 中国煤层气, 2017,14(2):17-20.
[12] XUE Z L. Cause analysis and technical discussion of CBM problem wells in southern Qinshui basin[J]. China Coalbed Methane, 2017,14(2):17-20.
[13] 伊永祥, 唐书恒, 张松航, 等. 沁水盆地柿庄南区块煤层气井储层压降类型及排采控制分析[J]. 煤田地质与勘探, 2019,47(5):118-126.
[13] YI Y X, TANG S H, ZHANG S H, et al. Analysis on the type of reservoir pressure drop and drainage control of coalbed methane well in the southern block of Shizhuang[J]. Coal Geology & Exploration, 2019,47(5):118-126.
[14] 胡秋嘉, 毛崇昊, 石斌, 等. 沁水盆地南部高煤阶煤层气井“变速排采—低恒套压”管控方法[J]. 煤炭学报, 2019,44(6):1795-1803.
[14] HU Q J, MAO C H, SHI B, et al. “Variable speed drainage-low casing pressure” control method of high rank CBM wells in South Qinshui Basin[J]. Journal of China Coal Society, 2019,44(6):1795-1803.
[15] 卢凌云, 张遂安, 郭文朋, 等. 煤层气直井低产原因与高产因素诊断分析[J]. 非常规油气, 2017,4(5):71-75.
[15] LU L Y, ZHANG S A, GUO W P, et al. The diagnosis and analysis of the low-yield cause and high-yield factor of vertical well in coalbed methane[J]. Unconventional Oil & Gas, 2017,4(5):71-75.
[16] 穆福元, 王红岩, 吴京桐, 等. 中国煤层气开发实践与建议[J]. 天然气工业, 2018,38(9):55-60.
[16] MU F Y, WANG HONGYAN, WU JINGTONG, et al. Practice of and suggestions on CBM development in China[J]. Natural Gas Industry, 2018,38(9):55-60.
[17] 胡秋嘉, 贾慧敏, 祁空军, 等. 高煤阶煤层气井单相流段流压精细控制方法——以沁水盆地樊庄—郑庄区块为例[J]. 天然气工业, 2018,38(9):76-81.
[17] HU Q J, JIA H M, QI K J, et al. A fine control method of flowing pressure in single-phase flow section of high-rank CBM gas development wells: A case study from the Fanzhuang-Zhengzhuang Block in the Qinshui Basin[J]. Natural Gas Industry, 2018,38(9):76-81.
[18] 刘羽欣. 柿庄北区块煤层气井排采制度研究[J]. 特种油气藏, 2019,26(5):118-123.
[18] LIU Y X. Drainage gas recovery system of CBM well in the north Shizhuang block[J]. Special Oil & Gas Reservoirs, 2019,26(5):118-123.
[19] 康圆圆, 邵先杰, 王彩凤. 高—中煤阶煤层气生产特征及影响因素分析——以樊庄、韩城矿区为例[J]. 石油勘探与开发, 2012,39(6):728-732.
[19] KANG Y Y, SHAO X J, WANG C F. Production characteristics and affecting factors of high-mid rank coalbed methanewells: Taking Fanzhuang and Hancheng mining areas as examples[J]. Petroleum Exploration and Development, 2012,39(6):728-732.
[20] 刘燕红, 李梦溪, 杨鑫, 等. 沁水盆地樊庄区块煤层气高产富集规律及开发实践[J]. 天然气工业, 2012,32(4):29-32.
[20] LIU Y H, LI M X, YANG X, et al. Laws of coalbed methane enrichment and high productivity in Fanzhuang Block of the Qinshui Basin and development practices[J]. Natural Gas Industry, 2012,32(4):29-32.
[21] 秦义, 李仰民, 白建梅, 等. 沁水盆地南部高煤阶煤层气井排采工艺研究与实践[J]. 天然气工业, 2011,31(11):22-25.
[21] QIN Y, LI Y M, BAI J M, et al. Technologies in the CBM drainage and production of wells in the southern Qinshui Basin with high-rank coal beds[J]. Natural Gas Industry, 2011,31(11):22-25.
[22] 李国富, 侯泉林. 沁水盆地南部煤层气井排采动态过程与差异性[J]. 煤炭学报, 2012,37(5):798-803.
[22] LI G F, HOU Q L. Dynamic process and difference of coalbed methane wells production in southern Qinshui Basin[J]. Journal of China Coal Society, 2012,37(5):798-803.
[23] 李清, 彭兴平. 延川南工区煤层气排采速率定量分析[J]. 石油天然气学报, 2012,34(12):123-127.
[23] LI Q, PENG X P. Quantified analysis on coalbed methane(CBM) drainage rate in Southern Yanchuan Block[J]. Journal of Oil and Gas Technology, 2012,34(12):123-127.
[24] 彭兴平. 鄂尔多斯盆地东南缘高煤阶煤层气井排采制度研究与应用——以延川南煤层气田为例[J]. 油气藏评价与开发, 2014,4(2):55-60.
[24] PENG X P. Research and application of CBM production in high coal rank of southeast margin, Ordos basin-taking CBM of South Yanchuan block for example[J]. Reservoir Evaluation and Development, 2014,4(2):55-60.
[25] 陈贞龙, 郭涛, 李鑫, 等. 延川南煤层气田深部煤层气成藏规律与开发技术[J]. 煤炭科学技术, 2019,47(9):112-118.
[25] CHEN Z L, GUO T, LI X, et al. Enrichment law and development technology of deep coalbed methane in South Yanchuan Coalbed Methane Field[J]. Coal Science and Technology, 2019,47(9):112-118.
[26] ZHAO X L, XU Z W, TANG D Z, et al. The influence of high-yield-water characteristics on productivity of CBM wells and expulsion and production method carried Out in South Yanchuan block of the Ordos basin, China[J]. Journal of Coal Science & Engineering, 2013,19(4):514-521.
[27] 张波, 胡维强, 徐爽, 等. 煤层气快速解吸方法研究[J]. 非常规油气, 2018,5(6):34-37.
[27] ZHANG B, HU W Q, XU S, et al. Study on the method of rapid desorption of Coalbed Methane[J]. Unconventional Oil & Gas, 2018,5(6):34-37.
文章导航

/