专家论坛

CCUS产业发展特点及成本界限研究

  • 胡永乐 ,
  • 郝明强
展开
  • 中国石油勘探开发研究院,北京 100083
胡永乐(I960—),男,教授级高级工程师,博士生导师,主要从事油气田开发工程方面的研究和科研管理工作。通讯地址:北京市海淀区学院路20号中国石油勘探开发研究院院办,邮政编码:100083。E-mail:hyl@petrochina.com.cn

收稿日期: 2020-03-20

  网络出版日期: 2020-07-03

基金资助

国家科技重大专项“C02捕集、驱油与埋存关键技术及应用”(2016ZX05016)

Development characteristics and cost analysis of CCUS in China

  • Yongle HU ,
  • Mingqiang HAO
Expand
  • Research Institute of Petroleum Exploration and Development, CNPC, Beijing 100083, China

Received date: 2020-03-20

  Online published: 2020-07-03

摘要

世界范围内CCUS(CO2捕集、利用与埋存)产业发展迅速,并且逐渐从单环节项目向全产业项目发展;捕集对象从电厂和天然气处理,扩展到钢铁、水泥、煤油、化肥及制氢等行业。目前,产业驱动方式主要有5种:政府及公共基金、国家激励政策、税收、强制性减排政策及碳交易等。我国规模集中排放CO2的企业主要以电厂、水泥、钢铁和煤化工为主,其排放量约占总量的92 %。按浓度划分,以低浓度的电厂、水泥、钢铁及炼化行业为主,高浓度的煤化工、合成氨、电石及中浓度的聚乙烯行业排放源相对较少。CO2来源成本由捕集、压缩及运输3部分构成,这3项成本均受捕集规模的影响,而捕集成本还与排放源浓度密切相关,高浓度排放源以压缩成本为主,低浓度排放源以捕集成本为主。多数油田对CO2成本的承受力低于其来源成本,这之间的差距需要寻求技术、政策及市场等方面的途径来填补。

本文引用格式

胡永乐 , 郝明强 . CCUS产业发展特点及成本界限研究[J]. 油气藏评价与开发, 2020 , 10(3) : 15 -22 . DOI: 10.13809/j.cnki.cn32-1825/te.2020.03.002

Abstract

Nowadays, the CCUS industry is developing rapidly worldwide, of which the projects are gradually turning from single-section items to whole-industry ones. The target of capture has expanded from power plants and natural gas processing to steel, cement, kerosene, fertilizers and hydrogen production. At present, there are five major ways to drive the industry: government and public funds, national incentive policies, taxation, mandatory emission reduction policies and carbon trading. In China, the CO2 emitting enterprises are mainly power plants, cement, steel and coal chemicals, accounting for 92 % of the total emissions. According to the concentration, the low concentration CO2 emission sources are mainly from power plants, cement, steel and refining and chemical industries, that with high concentration are mainly from coal chemical industry, synthetic ammonia and calcium carbide, and that with medium concentration is mainly from the polyethylene industry. The first are the majority, while the latter two are relatively few. Costs of CO2 sources are comprised of three main parts: capture cost, compression cost and transportation cost, all of which are affected by the scale of capture. Meanwhile, the cost of capture is also related to the concentration of emission source. For the type of high CO2 concentration, the expense of compression takes the lead in accounting. And capture cost is for the low CO2 concentration type. As the tolerance of CO2 cost is lower than source cost for most oilfields, it is necessary to seek ways like technology, policies or markets to fill the gap and promote the sustainable development.

参考文献

[1] 秦积舜, 李永亮, 吴德斌, 等. CCUS全球进展与中国对策建议[J]. 油气地质与采收率, 2020,27(1):20-28.
[1] QIN J S, LI Y L, WU D B, et al. CCUS global progress and China’s policy suggestions[J]. Petroleum Geology and Recovery Efficiency, 2020,27(1):20-28.
[2] 杨勇. 胜利油田特低渗透油藏CO2驱技术研究与实践[J]. 油气地质与采收率, 2020,27(1):11-19.
[2] YANG Y. Research and application of CO2 flooding technology in extra-low permeability reservoirs of Shengli Oilfield[J]. Petroleum Geology and Recovery Efficiency, 2020,27(1):11-19.
[3] 严巡, 刘让龙, 王长权, 等. 盐间油藏原油和CO2最小混相压力研究[J]. 非常规油气, 2019,6(5):54-56.
[3] YAN X, LIU R L, WANG C Q, et al. Investigation of the minimum miscibility of crude oil and CO2 in salt reservoir[J]. Unconventional Oil & Gas, 2019,6(5):54-56.
[4] 张本艳, 周立娟, 何学文, 等. 鄂尔多斯盆地渭北油田长3储层注CO2室内研究[J]. 石油地质与工程, 2018,32(3):87-90.
[4] ZHANG B Y, ZHOU L J, HE X W, et al. A laboratory study on CO2 injection of Chang 3 reservoir of Weibei oilfield in Ordos basin[J]. Petroleum Geology & Engineering, 2018,32(3):87-90.
[5] 丁妍. 濮城油田低渗高压注水油藏转CO2驱技术及应用[J]. 石油地质与工程, 2019,33(6):73-76.
[5] DING Y. Technology and application of CO2 flooding in low-permeability and high-pressure water injection reservoirs in Pucheng oilfield[J]. Petroleum Geology & Engineering, 2019,33(6):73-76.
[6] SVENSSON R, ODENBERGER M, JOHNSSON F, et al. Transportation systems for CO2 application to carbon capture and storage[J]. Energy Conversion and Management, 2004,45(15):2343-2353.
[7] 李阳. 低渗透油藏CO2驱提高采收率技术进展及展望[J]. 油气地质与采收率, 2020,27(1):1-10.
[7] LI Y. Technical advancement and prospect for CO2 flooding enhanced oil recovery in low permeability reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2020,27(1):1-10.
[8] 贾凯锋, 计董超, 高金栋, 等. 低渗透油藏CO2驱油提高原油采收率研究现状[J]. 非常规油气, 2019,6(1):107-114.
[8] JIA K F, JI D C, GAO J D, et al. The existing state of enhanced oil recovery by CO2 flooding in low permeability reservoirs[J]. Unconventional Oil & Gas, 2019,6(1):107-114.
[9] AYDIN G, KARAKURT I, AYDINER K. Evaluation of geologic storage options of CO2: Applicability, cost, storage capacity and safety[J]. Energy Policy, 2010,38(9):5072-5080.
[10] BENZ E, TRUCK S. Modeling the price dynamics of CO2 emission allowances[J]. Energy Economics, 2009,31(1):4-15.
[11] HEROLD J, MENDELEVITCH R. Modeling a carbon capture, transport, and storage infrastructure for Europe[J]. Environmental Modeling and Assessment, 2014,19(6):515-531.
[12] ANANTHARAMAN R, ROUSSANALY S, WESTMAN S F, et al. Selection of optimal CO2 capture plant capacity for better investment decisions[J]. Energy Procedia, 2013,37:7039-7045.
[13] HAN J H, LEE I B. Development of a scalable infrastructure model for planning electricity generation and CO2 mitigation strategies under mandated reduction of GHG emission[J]. Applied Energy, 2011,88(12):5056-5068.
[14] HAN J H, LEE I B. Development of a scalable and comprehensive infrastructure model for carbon dioxide utilization and disposal[J]. Industrial & Engineering Chemistry Research, 2011,50(10):6297-6315.
[15] KEMP A G, KASIM A S. A futuristic least-cost optimization model of CO2 transportation and storage in the UK/UK continental shelf[J]. Energy Policy, 2010,38(7):3652-3667.
[16] KLOKK ?, SCHREINER P F, PAGèS BERNAUS A, et al. Optimizing a CO2 value chain for the Norwegian continental shelf[J]. Energy Policy, 2010,38(11):6604-6614.
[17] 牛保伦. 边底水气藏注二氧化碳泡沫控水技术研究[J]. 特种油气藏, 2018,25(3):126-129.
[17] NIU B L. Water control in the CO2 foal-flooding gas reservoir with bottom-edge aquifer[J]. Special Oil & Gas Reservoirs, 2018,25(3):126-129.
[18] MIDDLETON R S, BIELICKI J M. A scalable infrastructure model for carbon capture and storage: Sim CCS[J]. Energy Policy, 2009,37(3):1052-1060.
[19] MCCOY S T, RUBIN E S. An engineering-economic model of pipeline transport of CO2 with application to carbon capture and storage[J]. International Journal of Greenhouse Gas Control, 2008,2(2):219-229.
[20] DAVISON J. Performance and costs of power plants with capture and storage of CO2[J]. Energy, 2007,32(7):1163-1176.
[21] RUBIN E S, CHEN C, RAO A B. Cost and performance of fossil fuel power plants with CO2 capture and storage[J]. Energy Policy, 2007,35(9):4444-4454.
[22] RUBIN E S, YEH S, ANTES M, et al. Use of experience curves to estimate the future cost of power plants with CO2 capture[J]. International Journal of Greenhouse Gas Control, 2007,1(2):188-197.
[23] 邓瑞健, 田巍, 李中超, 等. 二氧化碳驱动用储层微观界限研究[J]. 特种油气藏, 2019,26(3):133-137.
[23] DENG R J, TIAN W, LI Z C, et al. Microscopic limits of reservoir producing for carbon dioxide flooding[J]. Special Oil & Gas Reservoirs, 2019,26(3):133-137.
[24] 何应付, 赵淑霞, 计秉玉, 等. 砂岩油藏CO2驱提高采收率油藏筛选与潜力评价[J]. 油气地质与采收率, 2020,27(1):140-145.
[24] HE Y F, ZHAO S X, JI B Y, et al. Screening method and potential evaluation for EOR by CO2 flooding in sandstone reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2020,27(1):140-145.
[25] 鞠斌山, 于金彪, 吕广忠, 等. 低渗透油藏CO2驱油数值模拟方法与应用[J]. 油气地质与采收率, 2020,27(1):126-133.
[25] JU B S, YU J B, LYU G Z, et al. Numerical simulation method and application of CO2 flooding in low permeability reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2020,27(1):126-133.
[26] 王海妹. CO2驱油技术适应性分析及在不同类型油藏的应用——以华东油气分公司为例[J]. 石油地质与工程, 2018,32(5):63-65.
[26] WANG H M. Adaptive analysis of CO2 flooding technology and its application in different types of reservoirs[J]. Petroleum Geology and Engineering, 2018,32(5):63-65.
文章导航

/