方法理论

苏北稠油油藏CO2复合吞吐用新型降黏剂合成及效果评价

  • 蒋永平
展开
  • 中国石化华东油气分公司泰州采油厂,江苏 泰州 225300
蒋永平(1979—),男,硕士,高级工程师,从事油气田开发管理、CO2驱提高采收率工作等。通讯地址:江苏省泰州市海陵区五里桥试采大队机关,邮政编码:225300。Email:jiangyp.hdsj@sinopec.com

收稿日期: 2019-08-27

  网络出版日期: 2020-07-03

Synthesis of a new viscosity reducer for CO2 compound huff and puff in North Jiangsu heavy oil reservoirs and its effectiveness evaluation

  • Yongping JIANG
Expand
  • Taizhou Oil Production Plant, Sinopec East China Oil and Gas Company, Taizhou, Jiangsu 225300, China

Received date: 2019-08-27

  Online published: 2020-07-03

摘要

苏北油田兴北区块为极复杂断块稠油底水油藏,原油黏度大、流动性差导致开发矛盾突出。针对整装稠油油田的成熟开采方法难以实现该类油藏经济有效开发的问题,提出了底水稠油油藏CO2与降黏剂复合吞吐技术方法。降黏剂是该技术方法成功实施的关键。通过在降黏剂分子中引入苯环结构合成新型高分子表面活性剂型降黏剂,从浓度、温度、矿化度、pH值等方面开展该新型降黏剂性能评价。结果表明,该降黏剂具有较好的耐温抗盐性,降黏剂浓度为0.5 %时,稠油降黏率达到了90 %以上,该降黏剂与CO2混注条件下仍具有稳定的降黏率。矿场实施取得了较好的增油降水效果,对苏北油田及国内同类复杂断块稠油油田的经济有效开发具有较好的应用前景。

本文引用格式

蒋永平 . 苏北稠油油藏CO2复合吞吐用新型降黏剂合成及效果评价[J]. 油气藏评价与开发, 2020 , 10(3) : 39 -44 . DOI: 10.13809/j.cnki.cn32-1825/te.2020.03.006

Abstract

Xingbei block in North Jiangsu Oilfield is a complex fault block with heavy oil and bottom water reservoir. High viscosity and poor flowability of crude oil lead to low oil recovery. As it is difficult to realize the economical and effective development of this heavy oil reservoir by conventional technique, a method of combined stimulation of CO2 and viscosity reducer is proposed for EOR in heavy oil reservoir with bottom water. Viscosity reducer plays an important role in this method. A new polymer surface active agent for viscosity reduction is synthesized by introducing the benzene ring structure into viscosity reducer. The performance evaluation of this new viscosity reducers is carried out from the aspects of concentration, temperature, salinity and pH value. It shows that the viscosity reducer has good temperature resistance and salt tolerance. When the viscosity reducing agent concentration is 0.5 %, the viscosity reducing rate of heavy oil reaches more than 90 %. It also has a stable viscosity reducing ability mixing with CO2. Good effects of increasing oil production and reducing water cut have been achieved in the in-site implementation. There will be a promising prospect in the economic and effective development of North Jiangsu Oilfield and other similar domestic heavy oilfields with complicated fault block.

参考文献

[1] 王凯, 周文胜, 王泰超, 等. 高效水溶性稠油降黏剂的优选及性能评价[J]. 油田化学, 2019,36(1):152-156.
[1] WANG K, ZHOU W S, WANG T C, et al. Laboratory study on viscosity reducing properties of water-soluble solvent for heavy oil[J]. Oilfield Chemistry, 2019,36(1):152-156.
[2] 杨戬, 李相方, 阎逸群, 等. 蒸汽-空气复合驱提高稠油采收率研究[J]. 西南石油大学学报:自然科学版, 2017,39(2):111-117.
[2] YANG J, LI X F, YAN Y Q, et al. Research on enhancing heavy oil recovery by steam-air flooding[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2017,39(2):111-117.
[3] 吴公益, 蒋永平, 赵梓平, 等. CO2复合开发技术在低渗透油藏中的应用[J]. 油气藏评价与开发, 2016,6(6):27-31.
[3] WU G Y, JIANG Y P, ZHAO Z P, et al. The application of CO2 composite development technology in low permeability reservoir[J]. Reservoir Evaluation and Development, 2016,6(6):27-31.
[4] 高蓉, 张宁波, 卓龙成, 等. 反相减阻剂在兴北稠油油藏中的应用[J]. 油气藏评价与开发, 2014,4(1):58-61.
[4] GAO R, ZHANG N B, ZHUO L C, et al. Application of reversed phase drag reduction agent in heavy oil reservoir of Xingbei block[J]. Reservoir Evaluation and Development, 2014,4(1):58-61.
[5] 李崎, 王晓冬, 李秋叶, 等. 稠油降黏技术研究进展及发展趋势[J]. 化学研究, 2018,29(5):441-454.
[5] LI Q, WANG X D, LI Q Y, YANG J J, et al. Research progress and development trend for viscosity reduction technology of heavy crude oil[J]. Chemical Research, 2018,29(5):441-454.
[6] 孙月文, 寇杰, 韩云蕊, 等. 胜利油田陈南稠油的乳化降黏研究[J]. 油田化学, 2016,33(2):333-337.
[6] SUN Y W, KOU J, HAN Y R, et al. Emulsification and viscosity reduction of heavy oil in Chennan Station of Shengli Oilfied[J]. Oilfield Chemistry, 2016,33(2):333-337.
[7] 赵文学, 韩克江, 曾鹤, 等. 稠油降黏方法的作用机理及研究进展[J]. 当代化工, 2015,44(6):1365-1367.
[7] ZHAO W X, HAN K J, ZENG H, et al. Mechanisms and research progress of heavy oil viscosity reduction methods[J]. Contemporary Chemical Industry, 2015,44(6):1365-1367.
[8] 安申法, 王卓, 王建忠, 等. 新型高分子稠油降黏剂的合成与性能[J]. 合成树脂及塑料, 2018,35(5):50-53.
[8] ZHAO S F, WANG Z, WANG J Z, et al. Synjournal and performance of a novel polymeric viscosity reducer for heavy oils[J]. China Synthetic Resin and Plastics, 2018,35(5):50-53.
[9] 陈祖华, 吴公益, 钱卫明, 等. 苏北盆地复杂小断块油藏注CO2提高采收率技术及应用[J]. 油气地质与采收率, 2020,27(1):152-162.
[9] CHEN Z H, WU G Y, QIAN W M, WANG Jun, et al. EOR technology and application of CO2 injection for small complex fault block reservoirs in North Jiangsu Basin[J]. Petroleum Geology and Recovery Efficiency, 2020,27(1):152-162.
[10] 王海妹. CO2驱油技术适应性分析及在不同类型油藏的应用——以华东油气分公司为例[J]. 石油地质与工程, 2018,32(5):63-65.
[10] WANG H M. Adaptive analysis of CO2 flooding technology and its application in different types of reservoirs[J]. Petroleum Geology & Engineering, 2018,32(5):63-65.
[11] 周继柱, 时武龙, 付增华, 等. 一种抗温耐盐型水溶性两亲聚合物稠油降黏剂的合成及性能研究[J]. 应用化工, 2014,43(10):1843-1846.
[11] ZHOU J Z, SHI W L, FU Z H, et al. Preparation and properties research of viscosity reducing of salt and temperature resistance amphiphlic polymer[J]. Applied Chemical Industry, 2014,43(10):1843-1846.
[12] 冯西平, 易飞. 油溶性稠油降黏剂DBE-1的合成及性能研究[J]. 中国胶黏剂, 2018,27(5):19-22.
[12] FENG X P, YI F. Study on synjournal and properties of oil soluble viscosity reducer DBE-1 for thickened oil[J]. China Adhesives, 2018,27(5):19-22.
[13] 刘旭超, 杜江, 王秋霞, 等. 油溶性降黏剂的制备及性能评价[J]. 油田化学, 2018,35(3):512-516.
[13] LIU X C, DU J, WANG Q X, et al. Preparation and performance evaluation of oil-soluble viscosity reducer[J]. Oilfield Chemistry, 2018,35(3):512-516.
[14] 肖林波, 肖荣鸽, 陈俊志. 原油黏温曲线特性研究[J]. 辽宁化工, 2015,44(8):930-932.
[14] XIAO L B, XIAO R G, CHEN J Z. Research on characteristics of crude oil viscosity-temperature curve[J]. Liaoning Chemical Industry, 2015,44(8):930-932.
[15] 毛金成, 刘佳伟, 李勇明, 等. 超稠油化学降黏剂研究与进展[J]. 应用化工, 2016,45(7):1367-1370.
[15] MAO J C, LIU J W, LI Y M, et al. Research and development of super heavy oil viscosity reducer[J]. Applied Chemical Industry, 2016,45(7):1367-1370.
[16] 张梦轲, 吴玉国, 常显扬, 等. HLB对原油乳化降黏的影响及分析[J]. 辽宁石油化工大学学报, 2019,39(2):27-32.
[16] ZHANG M K, WU Y G, CHANG X Y, et al. The influence and analysis of HLB on emulsification and viscosity of crude oil[J]. Journal of Liaoning University of Petroleum & Chemical Technology, 2019,39(2):27-32.
[17] 张丁涌. 超稠油油藏HDCS开采技术优化[J]. 断块油气田, 2017,24(3):409-412.
[17] ZHANG D Y. Optimization of CO2 and viscosity breaker assisted steam huff and puff technology for horizontal wells in super-heavy oil reservoir[J]. Fault-Block Oil and Gas Field, 2017,24(3):409-412.
[18] 陈德春, 周淑娟, 孟红霞, 等. 陈家庄油田陈373块蒸汽吞吐后转CO2-化学剂复合吞吐研究[J]. 油气地质与采收率, 2014,21(6):76-78.
[18] CHEN D C, ZHOU S J, MENG H X. Research on compound stimulation of CO2-chemical after steam stimulation for Chen373 block[J]. Petroleum Geology and Recovery Efficiency, 2014,21(6):76-78.
[19] 王福顺, 牟珍宝, 刘鹏程, 等. 超稠油油藏CO2辅助开采作用机理实验与数值模拟研究[J]. 油气地质与采收率, 2017,24(6):86-91.
[19] WANG F S, MOU Z B, LIU P C, et al. Experiment and numerical simulation on mechanism of CO2 assisted mining in super heavy oil reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2017,24(6):86-91.
[20] 陶磊, 李兆敏, 程时清. 超稠油三元复合吞吐技术研究与应用[J]. 特种油气藏, 2015,22(2):81-84.
[20] TAO L, LI Z M, CHEN S Q. Research on and application of ultra-viscous oil recovery of ternary combination huff and puff technique[J]. Special Oil & Gas Reservoirs, 2015,22(2):81-84.
[21] 王业飞, 仲东, 徐睿, 等. 二元复合体系乳化性能及其对普通稠油的驱替效果[J]. 油气地质与采收率, 2019,26(5):79-85.
[21] WANG Y F, ZHONG D, XU R. Emulsification properties of binary composite system and their effect on displacement of conventional heavy oil[J]. Petroleum Geology and Recovery Efficiency, 2019,26(5):79-85.
[22] 邓宏伟. 超深层低渗透稠油CO2增溶降黏体系研发与应用[J]. 油气地质与采收率, 2020,27(1):81-88.
[22] DENG H W. Development and application of CO2 solubilizing and viscosity reducing system for ultra-deep and low-permeability heavy oil reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2020,27(1):81-88.
[23] 魏超平. 河口采油厂强边底水普通稠油油藏高含水期井网加密提高采收率研究[J]. 石油地质与工程, 2015,29(6):100-102.
[23] WEI C P. Well pattern infilling EOR research of strong edge-bottom water common heavy oil reservoir in high water-cut stage of Hekou oil production plant[J]. Petroleum Geology and Engineering, 2015,29(6):100-102.
[24] 刘晓磊. 强边底水稠油油藏开发影响因素分析[J]. 中国石油大学胜利学院学报, 2018,32(4):15-21.
[24] LIU X L. Influencing factors analysis on development of heavy oil reservoirs with strong edge-bottom water[J]. Journal of Shengli College China University of Petroleum, 2018,32(4):15-21.
[25] 许国晨, 王锐, 卓龙成, 等. 底水稠油油藏水平井二氧化碳吞吐研究[J]. 特种油气藏, 2017,24(3):155-159.
[25] XU G C, WANG R, ZHUO L C, et al. Horizontal-well CO2 huff and puff in heavy oil reservoirs with bottom water[J]. Special Oil & Gas Reservoirs, 2017,24(3):155-159.
[26] 冯其红, 李尚, 韩晓冬, 等. 稠油油藏边水推进规律物理模拟实验[J]. 油气地质与采收率, 2014,21(5):81-83.
[26] FENG Q H, LI S, HAN X D, et al. Physical experiment on edge water drive law of offshore heavy oil reservoir[J]. Petroleum Geology and Recovery Efficiency, 2014,21(5):81-83.
[27] 王志兴, 赵凤兰, 冯海如, 等. 边水断块油藏水平井组CO2协同吞吐注入量优化实验研究[J]. 油气地质与采收率, 2020,27(1):75-80.
[27] WANG Z X, ZHAO F L, FENG H R, et al. Experimental research on injection volumes optimization of CO2 huff and puff in horizontal well group in fault block reservoirs with edge water[J]. Petroleum Geology and Recovery Efficiency, 2020,27(1):75-80.
文章导航

/