矿场应用

大港油田开发中后期稠油油藏CO2吞吐参数优化及实践

  • 武玺 ,
  • 张祝新 ,
  • 章晓庆 ,
  • 李云鹏 ,
  • 陈子香 ,
  • 汤勇
展开
  • 1.中国石油大港油田公司,天津 300280;
    2.西南石油大学石油与天然气工程学院,四川 成都 610500
武玺(1974—),男,本科,高级工程师,从事油气田开发研究。通讯地址:天津市滨海新区大港油田三号院大港油田公司油气开发处,邮政编码:300280。E-mail:c4_wuxi@petrochina.com.cn

收稿日期: 2020-03-02

  网络出版日期: 2020-07-03

基金资助

四川省教育厅创新团队计划项目“温室气体CO2埋存与资源化利用”(16TD0010)

Optimization and practice of CO2 huff and puff parameters of heavy oil reservoir in the middle and late development stage in Dagang Oilfield

  • Xi WU ,
  • Zhuxin ZHANG ,
  • Xiaoqing ZHANG ,
  • Yunpeng LI ,
  • Zixiang CHEN ,
  • Yong TANG
Expand
  • 1. CNPC Dagang Oil Company, Tianjin 300280, China;
    2. Petroleum Engineering School, Southwest Petroleum University, Chengdu, Sichuan 610500, China

Received date: 2020-03-02

  Online published: 2020-07-03

摘要

大港油田稠油油藏水驱开发中后期含水快速上升,开采效果变差。CO2吞吐技术是开发稠油油藏的有效方式,但高含水后期稠油吞吐的参数优化及现场效果亟待研究。利用大港油田某稠油油藏,开展注CO2增溶膨胀和降黏实验。基于实验和测井资料,建立单井数值模拟模型,模拟了储层参数和CO2注入参数,分析了CO2吞吐增油机理。基于理论研究结果在板桥地区和刘官庄地区进行了CO2吞吐矿场试验。研究结果显示:CO2控水增油机理主要为膨胀原油体积、降低原油黏度,黏度降低幅度可达到98 %。注入量、注入速度、吞吐周期对CO2吞吐效果影响相对较大,建议单井CO2注入量在600~1 000 t(0.22~0.37HCPV),注入速度在40~80 t/d,吞吐周期为3~4次。板桥及刘官庄地区共实施CO2吞吐12井次,平均单井增油3.4倍,综合含水率降低52.2 %。因此,CO2吞吐是一种有效的控水增油技术,这对类似稠油油藏注水开采后期提高采收率具有重要的借鉴意义。

本文引用格式

武玺 , 张祝新 , 章晓庆 , 李云鹏 , 陈子香 , 汤勇 . 大港油田开发中后期稠油油藏CO2吞吐参数优化及实践[J]. 油气藏评价与开发, 2020 , 10(3) : 80 -85 . DOI: 10.13809/j.cnki.cn32-1825/te.2020.03.012

Abstract

The water cut of heavy oil reservoir in Dagang Oilfield increased rapidly in the middle and late period of water flooding, and the production effect became worse. CO2 huff and puff technology is an effective method to develop heavy oil reservoirs. But the parameter optimization and field effect in the late stage of high water cut needed to be studied urgently. Therefore, the heavy oil reservoir in Dagang Oilfield was used to carry out the experiments of CO2 injection for solubilization and swelling with viscosity reduction. Based on the experiments and well logging data, a single-well numerical simulation model was established to simulate the reservoir parameters and CO2 injection parameters, and analyzed the CO2 oil stimulation mechanism. Based on the results of theoretical researches, the in-site CO2 huff and puff experiments were carried out in Banqiao and Liuguanzhuang. The research results show that the mechanism of water control and oil increase by CO2 is mainly to expand the volume of crude oil and reduce the viscosity of crude oil, and the viscosity can be reduced by up to 98 %. The impact of injection volume, injection speed, and throughput cycle is relatively large on the CO2 throughput effect. It is recommended that the CO2 injection volume of a single well is 600~1 000 t(0.22~0.37HCPV), the injection speed is 40~80 t/d, and the throughput runs 3~4 cycles. In Banqiao and Liuguanzhuang, CO2 huff and puff have been carried out 12 times on wells, with an average increase of 3.4 times of oil production per well and a 52.2 % reduction of comprehensive water cut. Thus, CO2 huff and puff technology is an effective water-control and oil-increasing technology, which has important reference significance for improving oil recovery in the later stage of water injection in similar heavy oil reservoirs.

参考文献

[1] 姜瑞忠, 张海涛, 张伟, 等. CO2驱三区复合油藏水平井压力动态分析[J]. 油气地质与采收率, 2018,25(6):63-70.
[1] JIANG R Z, ZHANG H T, ZHANG W, et al. Dynamic pressure analysis of three-zone composite horizontal well in oil reservoirs for CO2 flooding[J]. Petroleum Geology and Recovery Efficiency, 2018,25(6):63-70.
[2] 汤勇, 尹鹏, 汪勇, 等. CO2混相驱的可行性评价[J]. 西南石油大学学报(自然科学版), 2014,36(2):133-137.
[2] TANG Y, YIN P, WANG Y, et al. Feasibility assessment of the CO2 miscible flooding process[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2014,36(2):133-137.
[3] 史云清, 贾英, 潘伟义, 等. 低渗致密气藏注超临界CO2驱替机理[J]. 石油与天然气地质, 2017,38(3):610-616.
[3] SHI Y Q, JIA Y, PAN W Y, et al. Mechanism of supercritical CO2 flooding in low-permeability tight gas reservoirs[J]. Oil & Gas Geology, 2017,38(3):610-616.
[4] 袁光喜, 陈金星, 罗全民, 等. CO2辅助蒸汽提高春光超稠油开发效果实验研究[J]. 石油地质与工程, 2018,32(6):82-84.
[4] YUAN G X, CHEN J X, LUO Q M, et al. Experimental study on the development effect of super heavy oil by CO2-assisted steam stimulation in Chunguang oilfield[J]. Petroleum Geology & Engineering, 2018,32(6):82-84.
[5] 贾虎, 赵金洲, 杨怀军, 等. 轻质油藏空气驱机理数值模拟[J]. 石油勘探与开发, 2014,41(2):215-222.
[5] JIA H, ZHAO J Z, YANG H J, et al. Numerical simulation of mechanism of high-pressure air injection(HPAI) in light oil reservoirs[J]. Petroleum Exploration and Development, 2014,41(2):215-222.
[6] 孙雷, 庞辉, 孙扬, 等. 浅层稠油油藏CO2吞吐控水增油机理研究[J]. 西南石油大学学报(自然科学版), 2014,36(6):88-94.
[6] SUN L, PANG H, SUN Y, et al. Mechanism study on water control and enhanced oil recovery by CO2 huff-puff for shallow heavy oil reservoir[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2014,36(6):88-94.
[7] 冯高城, 胡云鹏, 姚为英, 等. 注气驱油技术发展应用及海上油田启示[J]. 西南石油大学学报(自然科学版), 2019,41(1):147-152.
[7] FENG G C, HU Y P, YAOW Y, et al. Development and application of gas injection for oil recovery from offshore oilfields[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2019,41(1):147-152.
[8] 马安来, 孙红军, 郑磊, 等. 桑托斯盆地Jupiter油气田富含CO2油气藏形成机制[J]. 石油与天然气地质, 2017,38(2):371-378.
[8] MA A L, SUN H J, ZHENG L, et al. A study on forming mechanisms of CO2-rich reservoirs in Jupiter oilfield, Santos Basin, Brazil[J]. Oil & Gas Geology, 2017,38(2):371-378.
[9] 郭省学. 高温高压条件下CO2驱稠油微观运移特征[J]. 油气地质与采收率, 2019,26(3):99-104.
[9] GUO X X. Study on microscopic migration characteristics of heavy oil by CO2 flooding at high temperature and high pressure[J]. Petroleum Geology and Recovery Efficiency, 2019,26(3):99-104.
[10] 王海妹. CO2驱油技术适应性分析及在不同类型油藏的应用——以华东油气分公司为例[J]. 石油地质与工程, 2018,32(5):63-65.
[10] WANG H M. Adaptive analysis of CO2 flooding technology and its application in different types of reservoirs[J]. Petroleum Geology & Engineering, 2018,32(5):63-65.
[11] 商琳琳. 龙虎泡油田高台子致密油层CO2驱实验研究[J]. 石油地质与工程, 2018,32(5):60-62.
[11] SHANG L L. Experimental study on CO2 flooding of Gaotaizi tight oil layers in Longhupao oilfield[J]. Petroleum Geology & Engineering, 2018,32(5):60-62.
[12] 国殿斌, 徐怀民. 深层高压低渗油藏CO2驱室内实验研究——以中原油田胡96块为例[J]. 石油实验地质, 2014,36(1):102-105.
[12] GUO D B, XU H M. Laboratory experiments of CO2 flooding in deep-buried high-pressure low-permeability reservoirs: A case study of block Hu96 in Zhongyuan Oilfield[J]. Petroleum Geology & Experiment, 2014,36(1):102-105.
[13] 杨胜来, 王亮, 何建军, 等. CO2吞吐增油机理及矿场应用效果[J]. 西安石油大学学报(自然科学版), 2004,19(6):23-26.
[13] YANG S L, WANG L, HE J J, et al. Oil production enhancing mechanism and field applying result of carbon dioxide huff-puff[J]. Journal of Xi’an Shiyou University(Natural Science Edition), 2004,19(6):23-26.
[14] 丁妍. 濮城油田低渗高压注水油藏CO2驱技术及应用[J]. 石油地质与工程, 2019,33(6):73-76.
[14] DING Y. Technology and application of CO2 flooding in low-permeability and high-pressure water injection reservoirs in Pucheng oilfield[J]. Petroleum Geology & Engineering, 2019,33(6):73-76.
[15] 李兰兰, 张明龙, 朱淼, 等. 二氧化碳驱油技术在赵118断块的研究与应用[J]. 石油知识, 2017,(4):46-48.
[15] LI L L, ZHANG M L, ZHU M, et al. Research and application of carbon dioxide flooding technology in Zhao 118 Fault Block[J]. Petroleum Knowledge, 2017,(4):46-48.
[16] 许国晨, 王锐, 卓龙成, 等. 底水稠油油藏水平井二氧化碳吞吐研究[J]. 特种油气藏, 2017,24(3):155-159.
[16] XU G C, WANG R, ZHUO L C, et al. Horizontal-well CO2 huff and puff in heavy oil reservoirs with bottom water[J]. Special Oil & Gas Reservoir, 2017,24(3):155-159.
[17] 王福顺, 牟珍宝, 刘鹏程, 等. 超稠油油藏CO2辅助开采作用机理实验与数值模拟研究[J]. 油气地质与采收率, 2017,24(6):86-91.
[17] WANG F S, MOU Z B, LIU P C, et al. Experiment and numerical simulation on mechanism of CO2 assisted mining in super heavy oil reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2017,24(6):86-91.
[18] 张艳玉, 李延杰, 孙晓飞, 等. 注CO2混相驱候选油藏筛选评价新方法[J]. 西南石油大学学报(自然科学版), 2015,37(4):141-146.
[18] ZHANG Y Y, LI Y J, SUN X F, et al. A new screening evaluation method for candidate reservoirs by CO2 injection miscible flooding[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2015,37(4):141-146.
[19] 牛保伦. 边底水气藏注二氧化碳泡沫控水技术研究[J]. 特种油气藏, 2018,25(3):126-129.
[19] NIU B L. Water control in the CO2 foal-flooding gas reservoir with bottom-edge aquifer[J]. Special Oil & Gas Reservoirs, 2018,25(3):126-129.
[20] 刘道杰, 史英, 轩玲玲, 等. 特高含水油藏开发后期深部调驱+二氧化碳吞吐技术[J]. 特种油气藏, 2018,25(2):65-68.
[20] LIU D J, SHI Y, XUAN L L, et al. In-depth profile control and carbon dioxide huff-puff in the late stage of ultra-high water-cut oil reservoir development[J]. Special Oil & Gas Reservoir, 2018,25(2):65-68.
[21] 王世璐, 王玉霞, 贾凯锋. 低渗透油藏岩心注CO2驱油效率物理模拟[J]. 非常规油气, 2019,6(2):85-90.
[21] WANG S L, WANGY X, JIA K F, et al. Physical simulation of CO2 flooding efficiency in low permeability reservoir core[J]. Unconventional Oil & Gas, 2019,6(2):85-90.
文章导航

/