油气藏评价与开发 >
2020 , Vol. 10 >Issue 3: 96 - 103
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2020.03.015
调驱剂传输运移能力技术指标评价研究
收稿日期: 2019-02-12
网络出版日期: 2020-07-03
基金资助
“十三五”国家科技重大专项“渤海双高油田多级窜逸堵调驱一体化技术研究及示范”(2016ZX05058-003-010);国家自然科学基金“抗盐型聚合物油藏适应性及其改进方法基础研究”(51574086);中海石油(中国)有限公司综合科研“分级组合深部调剖技术扩大试验研究”(CCL2016RCPS0077RSN)
Technical index evaluation of transport ability of profile control and displacement agents
Received date: 2019-02-12
Online published: 2020-07-03
近年来,化学驱油技术应用规模呈现逐年增加态势,但一些矿场试验效果却并不理想,造成这种状况的原因有许多,其中就包括调驱剂与储层孔隙适应性问题。针对矿场生产和理论实际需求,开展了化学调驱剂传输运移能力技术指标评价研究。结果表明,调驱剂在多孔介质中传输运移是实现深部液流转向作用的必要条件,传输运移能力可采用调驱剂注入结束时岩心前部与后部压差之比β值来评价,推荐技术指标范围:① β=1~3,优良;② β=4~8,中等;③ β=9~15,较差;④ β≥16,差。调驱剂滞留和传输运移能力与其自身材料分子结构形态即聚集体尺寸和岩心渗透率密切相关,二者的目的相互矛盾,实际应用时需要合理兼顾。黏度是流体内摩擦大小的评价指标,聚合物溶液内摩擦力大小与聚合物浓度、分子聚集体形态和溶剂水矿化度等因素有关。通过分子间物理缔合和化学交联反应可以改变聚合物分子聚集体形态(尺寸),进而达到增大聚合物溶液内摩擦力即增加黏度目的,但这将导致聚合物溶液传输运移能力变差,进而削弱聚合物溶液深部滞留和液流转向效果。
张云宝 , 卢祥国 , 刘义刚 , 李彦阅 , 曹伟佳 , 鲍文博 . 调驱剂传输运移能力技术指标评价研究[J]. 油气藏评价与开发, 2020 , 10(3) : 96 -103 . DOI: 10.13809/j.cnki.cn32-1825/te.2020.03.015
In recent years, the application scale of chemical flooding technology has been increased, but the results of some field tests are not ideal. There are many reasons for this situation, including the adaptability of profile control and displacement agent with reservoir pores. Aiming at the actual demand of field production and theory, the evaluation method and technical index of transport capacity of chemical profile control and flooding agent are studied. The results show that the transport capacity of profile control agent in porous media is a necessary condition for realizing the diversion of deep liquid flow. The transport capacity can be evaluated by the ratio of the pressure difference(β) between the front and the back of core at the end of injection of profile control agent. The recommended technical index ranges are as follows: ① β=1~3, good transport capacity; ② β =4~8, medium; ③ β=9~15, poor; ④ β>16, poor. The retention and transport ability of profile control and displacement agents are closely related to the molecular structure of materials, aggregate size and core permeability. Their purposes are contradictory and need to be taken into account reasonably in practical application. Viscosity is an index to evaluate the internal friction of fluids. The internal friction of polymer solution is related to polymer concentration, molecular aggregate morphology and salinity of solvent water. The size of polymer aggregates can be changed by intermolecular physical association and chemical cross-linking reaction, which can increase the friction force and viscosity of polymer solution, but this will also lead to poor transport capacity of polymer solution, and then weaken the deep retention and liquid flow diversion effect of polymer solution.
[1] | 吴晓慧. 大庆长垣油田特高含水期水驱精细挖潜措施后产量变化规律[J]. 大庆石油地质与开发, 2018,37(5):71-75. |
[1] | WU X H. Changed laws of the production after water flooding finely-tapped-potential stimulation for Daqing Placanticline oilfields at the stage of extra-high water cut[J]. Petroleum Geology & Oilfield Development in Daqing, 2018,37(5):71-75. |
[2] | 王秋语. 国外高含水砂岩油田提高水驱采收率技术进展[J]. 岩性油气藏, 2012,24(3):123-128. |
[2] | WANG Q Y. Technical progress for improving waterflood recovery efficiency of foreign high water cut sandstone oilfield[J]. Lithologic Reservoirs, 2012,24(3):123-128. |
[3] | 王友启. 胜利油田高含水期油藏水驱精细调整技术方向[J]. 石油钻探技术, 2011,39(1):101-104. |
[3] | WANG Y Q. Fine adjustment direction of water flooding in high water cut oil reservoirs of Shengli Oilfield[J]. Drilling Petroleum Techniques, 2011,39(1):101-104. |
[4] | 刘如杰. 超稠油污油泥复合调剖技术研究与应用[J]. 非常规油气, 2019,6(3):58-64. |
[4] | LIU R J. Research and application of composite profile control technology for super heavy oil sludge[J]. Unconventional Oil & Gas, 2019,6(3):58-64. |
[5] | 王业飞, 于海洋, 张健, 等. 用于渤海油田疏水缔合聚合物驱的表面活性剂降压增注研究[J]. 中国石油大学学报(自然科学版), 2010,34(6):151-156. |
[5] | WANG Y F, YU H Y, ZHANG J, et al. Study on decompression and augmented injection by surfactants during hydrophobically associating polymer flooding in Bohai Oilfield[J]. Journal of China University of Petroleum(Edition of Natural Science), 2010,34(6):151-156. |
[6] | 牛丽伟, 卢祥国, 熊春明, 等. 无机凝胶成胶性能及封堵效果实验[J]. 石油勘探与开发, 2013,40(6):728-732. |
[6] | NIU L W, LU X G, XIONG C M, et al. Experimental study on gelling property and plugging effect of inorganic gel system(OMGL)[J]. Petroleum Exploration and Development, 2013,40(6):728-732. |
[7] | 吴行才, 韩大匡, 卢祥国, 等. 微凝胶颗粒水分散液体系在多孔介质中的驱替机理[J]. 地球科学, 2017,46(7):925-933. |
[7] | WU X C, HAN D K, LU X G, et al. Oil displacing mechanism of soft microgel particle dispersion in porous media[J]. Earth Science, 2017,46(7):925-933. |
[8] | 姜维东, 康晓东, 谢坤, 等. 疏水缔合聚合物缔合程度及其油藏适应性[J]. 大庆石油地质与开发, 2013,32(4):103-107. |
[8] | JIANG W D, KANG X D, XIE K, et al. Degree of the association of hydrophobically associating polymer and its adaptability to the oil reservoir[J]. Petroleum Geology & Oilfield Development in Daqing, 2013,32(4):103-107. |
[9] | 何静, 倪军, 耿罗斌. 多糖胶水溶液黏度影响因素比较[J]. 非常规油气, 2017,4(2):109-113. |
[9] | HE J, NI J, GENG L B. Comparison of influencing factors on viscosity of polysaccharide gum solution[J]. Unconventional Oil & Gas, 2017,4(2):109-113. |
[10] | 陈林, 李炜, 张品, 等. Vispac-12钻井液增黏剂反相乳液的性能研究[J]. 非常规油气, 2018,5(2):84-88. |
[10] | CHEN L, LI W, ZHANG P, et al. Study on properties of an inverse emulsion for vispac-12 as viscosifier of drilling fluids[J]. Unconventional Oil & Gas, 2018,5(2):84-88. |
[11] | 夏惠芬, 王德民, 王刚, 等. 聚合物溶液在驱油过程中对盲端类残余油的弹性作用[J]. 石油学报, 2006,27(2):72-76. |
[11] | XIA H F, WANG D M, WANG G, et al. Elastic behavior of polymer solution to residual oil at dead-end[J]. Acta Petrolei Sinica, 2006,27(2):72-76. |
[12] | 王德民, 王刚, 吴文祥, 等. 黏弹性驱替液所产生的微观力对驱油效率的影响[J]. 西安石油大学学报(自然科学版), 2008,23(1):43-55. |
[12] | WANG D M, WANG G, WU W X, et al. Influence of the micro-force produced by viscoelastic displacement liquid on displacement efficiency[J]. Journal of Xi’an Shiyou University(Natural Science Edition), 2008,23(1):43-55. |
[13] | 张新英. 胜坨油田高温高盐油藏超高分子疏水缔合聚合物注入试验[J]. 石油地质与工程, 2012,26(6):122-124. |
[13] | ZHANG X Y. Field test of ultra-high molecular weight hydrophobic associative polymer flooding in high temperature and high salinity oil reservoirs[J]. Petroleum Geology and Engineering, 2012,26(6):122-124. |
[14] | 李美俊, 张忠涛, 陈聪, 等. 珠江口盆地白云凹陷储层沥青成因及其对油藏调整改造的启示[J]. 石油与天然气地质, 2019,40(1):133-141. |
[14] | LI M J, ZHANG Z T, CHEN C, et al. Origin of reservoir bitumen and its implications for adjustment and reformation of hydrocarbon accumulation in Baiyuan Sag, Pearl River Mouth Basin[J]. Oil & Gas Geology, 2019,40(1):133-141. |
[15] | 金亚杰. 国外聚合物驱油技术研究及应用现状[J]. 非常规油气, 2017,4(1):116. |
[15] | JIN Y J. Progress in research and application of polymer flooding technology abroad[J]. Unconventional Oil & Gas, 2017,4(1):116. |
[16] | 谢坤, 李强, 苑盛旺, 等. 疏水缔合聚合物与渤海储层非均质性适应性研究[J]. 油田化学, 2015,32(1):102-107. |
[16] | XIE K, LI Q, YUAN S W, et al. Adaptation between the hydrophobically associating polymer and Bohai reservoir heterogeneity[J]. Oilfield Chemistry, 2015,32(1):102-107. |
[17] | 张淑霞, 刘帆, 沐宝泉. 蒸汽驱及化学辅助蒸汽驱提高稠油采收率实验[J]. 石油与天然气地质, 2017,38(5):1000-1004. |
[17] | ZHANG S X, LIU F, MU B Q. An experimental study on enhanced heavy oil recovery by steam flooding and chemical assisted steam flooding[J]. Oil & Gas Geology, 2017,38(5):1000-1004. |
[18] | 李美蓉, 黄漫, 曲彩霞, 等. 疏水缔合型和非疏水缔合型驱油聚合物的结构与溶液特征[J]. 中国石油大学学报(自然科学版), 2013,37(3):167-171. |
[18] | LI M R, HUANG M, QU C X, et al. Structure and solution properties for HPAM and AHPAM used in oil displacement polymer[J]. Journal of China University of Petroleum(Edition of Natural Science), 2013,37(3):167-171. |
[19] | 吕洲, 王玉普, 李莉, 等. 油气储层岩心实验的样本量设计[J]. 石油实验地质, 2018,40(4):589-594. |
[19] | LYU Z, WANG Y P, LI L, et al. Sample size design for oil and gas reservoir core-plug experiments[J]. Petroleum Geology & Experiment, 2018,40(4):589-594. |
[20] | CAO W J, XIE K, LU X G, et al. Effect of profile-control oil-displacement agent on increasing oil recovery and its mechanism[J]. Fuel, 2019,237:1151-1160. |
[21] | XIE K, LU X G, LI Q, et al. Analysis of reservoir applicability of hydrophobically associating polymer[J]. SPE Journal, 2016,21(1):1-9. |
[22] | 金玉宝, 卢祥国, 刘进祥, 等. 疏水缔合聚合物传输运移能力及其作用机理[J]. 石油化工, 2017,46(5):600-607. |
[22] | JIN Y B, LU X G, LIU J X, et al. Capability and mechanism of hydrophobic associating polymers in transmission and migration[J]. Petrochemical Technology, 2017,46(5):600-607. |
[23] | 牛丽伟, 卢祥国, 王晓燕, 等. 聚合物、聚表剂和Cr3+聚合物凝胶分子构型及其渗流特性差异[J]. 中国石油大学学报(自然科学版), 2014,38(6):186-191. |
[23] | NIU L W, LU X G, WANG X Y, et al. Differences in molecular configuration and seepage properties among polymer, active polymer and Cr3+ polymer gel[J]. Journal of China University of Petroleum(Edition of Natural Science), 2014,38(6):186-191. |
[24] | 卢祥国, 王晓燕, 李强, 等. 高温高矿化度条件下驱油剂中聚合物分子结构形态及其在中低渗油层中的渗流特性[J]. 化学学报, 2010,68(12):1229-1234. |
[24] | LU X G, WANG X Y, LI Q, et al. The polymer molecular configuration in the oil displacement agent with high temperature and salinity and its seepage property in the medium-low permeability layer[J]. Acta Chimica Sinica, 2010,68(12):1229-1234. |
[25] | 李强, 卢祥国, 徐典平, 等. 聚合物表面活性剂分子聚集态结构及其对渗流特性影响研究[J]. 油田化学, 2010,27(4):398-402. |
[25] | LI Q, LU X G, XU D P, et al. Study on aggregate structure of polymeric surfactant and it's influences on the seepage flow characteristics[J]. Oilfield Chemistry, 2010,27(4):398-402. |
/
〈 | 〉 |