常规油气

准噶尔盆地车拐斜坡区储层碳酸盐胶结物碳氧同位素特征及其成因

  • 陈波 ,
  • 张顺存 ,
  • 孙国强 ,
  • 史基安 ,
  • 吴涛
展开
  • 1.广西高校北部湾石油天然气资源有效利用重点实验室(北部湾大学),广西 钦州535000
    2.甘肃省油气资源研究重点实验室/中国科学院油气资源研究重点实验室,甘肃 兰州 730000
    3.中国石油新疆油田分公司勘探开发研究院,新疆 克拉玛依 834000
陈波(1985 —),男,博士,讲师,从事地球化学研究。通讯地址:广西钦州市滨海大道12号北部湾大学城,邮政编码:535000。E-mail:cbo- 11@163.com

收稿日期: 2019-02-26

  网络出版日期: 2020-08-07

基金资助

广西自然科学基金联合资助培育项目“多因素耦合作用下砂泥岩互层间蒙脱石伊利石化形成机理及主控因素研究”(2019GXNSFAA245016)

Characteristics and formation mechanism of Carbonate cementation in Che-Guai slope area, Junggar Basin

  • Bo CHEN ,
  • Shuncun ZHANG ,
  • Guoqiang SUN ,
  • Ji’an SHI ,
  • Tao WU
Expand
  • 1.Guangxi Colleges and Universities Key Laboratory of Beibu Gulf Oil and Natural Gas Resource Effective Utilization, Beibu Gulf University, Qinzhou, Guangxi 535011, China
    2. Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, Gansu, China
    3. Research Institute of Exploration and Development, Xinjiang Oilfield Company, PetroChina, Karamay, Xinjiang 834000, China

Received date: 2019-02-26

  Online published: 2020-08-07

摘要

阐明碳酸盐胶结物的形成机制及对储层物性的影响具有重要意义,综合通过岩矿学、地球化学方法,分析了准噶尔盆地车拐斜坡区储层碳酸盐胶结物的赋存特征及形成机制,结果表明:δ 13CPDB值为-29.6 ‰~6.7 ‰,δ 18OPDB值为-19.2 ‰~-12.5 ‰,跨度较大,说明碳酸盐胶结物形成的物质来源及水岩相互作用的复杂性。δ 13CPDBδ 18OPDB值分别较典型的海相或湖相的碳酸盐呈正偏移和负偏移,δ 13CPDB正偏移主要受到混合热液流体碳同位素分馏和少量沉积碳酸盐溶解的共同作用,δ 18OPDB值负偏移则可能是大气降水、深部热液等多种流体混合作用和成岩温度升高的影响造成的。车拐斜坡区碳酸盐胶结物的物质来源与有机酸脱羧产生的CO2、黏土矿物压实排水作用、长石碎屑溶蚀及黏土矿物相互转换释放大量的Ca 2+、Fe 3+和Mg 2+等离子有关,镜下观察发现研究区碳酸盐胶结物交代碎屑颗粒且伴随出现沥青质现象,以粉晶—粗晶形式赋存于排列紧密的碎屑颗粒之间,为成岩晚期产物,对储层物性起破坏作用。

本文引用格式

陈波 , 张顺存 , 孙国强 , 史基安 , 吴涛 . 准噶尔盆地车拐斜坡区储层碳酸盐胶结物碳氧同位素特征及其成因[J]. 油气藏评价与开发, 2020 , 10(4) : 101 -106 . DOI: 10.13809/j.cnki.cn32-1825/te.2020.04.016

Abstract

It is of great significance to clarify the formation mechanism of carbonate cementation and its influence on reservoir physical properties. By means of petrology and geochemistry, the occurrence characteristics and formation mechanism of carbonate cements in Cegai slope of Junggar Basin are analyzed. The results show that the distribution range of δ 13CPDB value is -29.6 ‰~6.7 ‰, that of δ 18OPDB value is -12.5 ‰~19.2 ‰, and it has a large span. All those indicate the material source of carbonate cementation and the complexity of water-rock interaction. δ 13CPDB value has a positive offset with the typical marine or lacustrine phase of carbonate, while δ 18OPDB value has the negative offset. The positive offset of δ 13CPDB value is mainly affected by the carbon isotope fractionation of mixed hydrothermal fluid and the dissolution of a small amount of sedimentary carbonate. The negative deviation of δ 18OPDB value may be caused by the mixing of various fluids—such as precipitation and deep hydrothermal—and the rise of diagenetic temperature. The material source of carbonate cements in Che-Guai slope is related to the CO2 produced by the decarboxylation of organic acids, compaction and drainage of clay minerals, the dissolution of feldspar debris and the release of a large amount of plasma like Ca 2+, Fe 3+ and Mg 2+ by conversion among clay minerals. Under the microscope, it is found that the carbonate cements are metasomatic to detrital particles and accompanied by asphaltene appearance, and appear in the form of crystal powder to macrocrystalline grain among the closely arranged clastic particles, as a product of late diagenetic stage, which destroy the physical properties of reservoirs.

参考文献

[1] 刘四兵, 黄思静, 沈忠民 , 等. 砂岩中碳酸盐胶结物成岩流体演化和水岩作用模式——以川西孝泉—丰谷地区上三叠统须四段致密砂岩为例[J]. 中国科学D辑:地球科学, 2014,44(7):1403-1417.
[1] LIU S B, HUANG S J, SHEN Z M , et al. Diagenetic fluid evolution and water-rock interaction model of carbonate cements in sandstone: An example from the reservoir sandstone of the Fourth Member of the Xujiahe Formation of the Xiaoquan-Fenggu area, Sichuan Province, China[J]. Scientia Sinica(Terrae), 2014,44(7):1403-1417.
[2] 田亚铭, 施泽进, 李庭艳 , 等. 姬塬地区长8油层组碳酸盐胶结物特征与成因[J]. 西安石油大学学报(自然科学版), 2011,26(3):26-31.
[2] TIAN Y M, SHI Z J, LI T Y , et al. Characteristics and origin of the carbonate cements of Chang 8 member in Jiyuan area, Ordos Basin[J]. Journal of Xi’An Shiyou University(Natural Science), 2011,26(3):26-31.
[3] 王大锐, 张映红 . 渤海湾油气区火成岩外变质带储集层中碳酸盐胶结物成因研究及意义[J]. 石油勘探与开发, 2001,28(2):40-42.
[3] WANG D R, ZHANG Y H . A study on the origin of the carbonate cements within reservoirs in the external metamorphic belt of the Bohai Bay oil-gas bearing region[J]. Petroleum Exploration and Development, 2001,28(2):40-42.
[4] 孙致学, 孙治雷, 鲁洪江 , 等. 砂岩储集层中碳酸盐胶结物特征——以鄂尔多斯盆地中南部延长组为例[J]. 石油勘探与开发, 2010,37(5):543-551.
[4] SUN Z X, SUN Z L, LU H J , et al. Characteristics of carbonate cements in sandstone reservoirs: A case from Yanchang Formation,middle and southern Ordos Basin, China[J]. Petroleum Exploration and Development, 2010,37(5):543-551.
[5] 姚泾利, 王琪, 张瑞 , 等. 鄂尔多斯盆地中部延长组砂岩中碳酸盐胶结物成因与分布规律研究[J]. 天然气地球科学, 2011,22(6):943-950.
[5] YAO J L, WANG Q, ZHANG R , et al. Origin and spatial distribution of carbonate cements in Yanchang Fm.(Triassic) Sandstones within the Lacustrine Center of Ordos Basin, NW China[J]. Natural Gas Geoscience, 2011,22(6):943-950.
[6] 王代富, 罗静兰, 陈淑慧 , 等. 珠江口盆地白云凹陷深层砂岩储层中碳酸盐胶结作用及成因探讨[J]. 地质学报, 2017,91(9):2079-2090.
[6] WANG D F, LUO J L, CHEN S H , et al. Carbonate cementation and origin analysis of deep sandstone reservoirs in the Baiyun Sag, Pearl River Mouth Basin[J]. Acta Geologica Sinica, 2017,91(9):2079-2090.
[7] 魏巍, 朱筱敏, 国殿斌 , 等. 查干凹陷下白垩统砂岩储层碳酸盐胶结物成岩期次及形成机理[J]. 地球化学, 2015,44(6):590-599.
[7] WEI W, ZHU X M, GUO D B , et al. Carbonate cements in Lower Cretaceous Bayingebi sandstone reservoirs in Chagan Sag, Yin-e Basin: Formation phases and formation mechanisms[J]. Geochimica, 2015,44(6):590-599.
[8] 陈波, 陈汾君, 马进业 , 等. 冷湖地区上干柴沟组储层碳酸盐胶结物特征及地质意义[J]. 大庆石油地质与开发, 2016,35(5):28-33.
[8] CHEN B, CHEN F J, MA J Y , et al. Characteristics and their geological significance of the carbonate cements in Shangganchaigou-Formation reservoirs of Lenghu area[J]. Petroleum Geology & Oilfield Development in Daqing, 2016,35(5):28-33.
[9] WOODS A D, BOTTJER D J, MUTTI M , et al. Lower triassic large sea-floor carbonate cements: Their origin and a mechanism for the prolonged biotic recovery from the end-Permian mass extinction[J]. Geology, 1999,27(7):645-648.
[10] 鲁新川, 张顺存, 蔡冬梅 , 等. 准噶尔盆地车拐地区三叠系成岩作用与孔隙演化[J]. 沉积学报, 2012,30(6):1123-1129.
[10] LU X C, ZHANG S C, CAI D M , et al. Diagenesis and pore evolution of the triassic reservoirs in Cheguai Area, northwestern margin of Junggar Basin[J]. Acta Sedimentologica Sinica, 2012,30(6):1123-1129.
[11] 张顺存, 仲伟军, 梁则亮 , 等. 准噶尔盆地车拐地区侏罗系八道湾组储层成岩作用特征分析[J]. 岩性油气藏, 2011,23(5):49-55.
[11] ZHANG S C, ZHONG W J, LIANG Z L , et al. Reservoir diagenesis characteristics of Jurassic Badaowan Formation in Che-Guai area,Junggar Basin[J]. Lithologic Reservoirs, 2011,23(5):49-55.
[12] 梁则亮, 张顺存, 贾春明 , 等. 准噶尔盆地西北缘车拐地区三叠系储层特征研究[J]. 岩性油气藏, 2012,24(3):15-20.
[12] LIANG Z L, ZHANG S C, JIA C M , et al. Characteristics of the Triassic reservoirs in Cheguai area, nothwestern margin of Junggar Basin[J]. Lithologic Reservoirs, 2012,24(3):15-20.
[13] 谭开俊, 潘建国, 姚清洲 , 等. 车拐地区侏罗系岩性油气藏形成条件及主控因素[J]. 岩性油气藏, 2007,19(2):41-44.
[13] TAN K J, PAN J G, YAO Q Z , et al. The formation conditions and main controlling factors of Jurassic lithologic reservoirs in Cheguai area, Junggar Basin[J]. Lithologic Reservoirs, 2007,19(2):41-44.
[14] 王卓超, 叶加仁 . 准噶尔盆地西北缘车拐地区侏罗系成藏动力学模拟[J]. 地质科技情报, 2010,29(2):63-67.
[14] WANG Z C, YE J R . Modeling of pool-forming dynamics for Jurassic in Che-Guai Area, northwest edge of Junggar Basin[J]. Geological Science and Technology Information, 2010,29(2):63-67.
[15] 陈奋雄, 李军, 师志龙 , 等. 准噶尔盆地西北缘车—拐地区三叠系沉积相特征[J]. 大庆石油学院学报, 2012,36(2):22-28.
[15] CHEN F X, LI J, SHI Z L , et al. The characteristic of triassic sedimentary facies in Che-Guai area of Northwest Margin, Junggar Basin[J]. Journal of Daqing Petroleum Institute, 2012,36(2):22-28.
[16] 付锁堂, 王震亮, 张永庶 , 等. 柴北缘西段鄂博梁构造带储层碳酸盐胶结物成因及其油气地质意义——来自碳、氧同位素的约束[J]. 沉积学报, 2015,33(5):991-999.
[16] FU S T, WANG Z L, ZHANG Y S , et al. Origin of carbonate cements in reservoir rocks and its petroleum geologic significance: Eboliang structure belt, northern margin of Qaidam Basin[J]. Acta Sedimentologica Sinica, 2015,33(5):991-999.
[17] FRIEDMAN I, O′NEIL J R . Compilation of stable isotope fraction factors of geochemical interest[A]. In: Fleischer M(edition), Data of Geochemistry(sixth edition), United States, Geological Survey, 1977: 440-1212.
[18] 潘立银, 黄革萍, 寿建峰 , 等. 柴达木盆地南翼山地区新近系湖相碳酸盐岩成岩环境初探—碳、氧同位素和流体包裹体证据[J]. 矿物岩石地球化学通报, 2009,28(1):71-74.
[18] PAN L Y, HUANG G P, SHOU J F , et al. A preliminary study of formation environment of the neogene lacustrine carbonates in Nanyishan Area of Qaidam Basin: Constrains from carbon-oxygen isotope and fluid inclusion analysis[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2009,28(1):71-74.
[19] HOEFS J . Stable isotope geochemistry[M]. Switzerland: Springer Cham, 2015.
[20] DRUMMOND C N, WILKINSON B H, LOHMANN K C , et al. Effect of regional topography and hydrology on the lacustrine isotopic record of Miocene paleoclimate in the Rocky Mountains[J]. Palaeogeography Palaeoclimatology Palaeoecology, 1993,101(1-2):67-79.
[21] 袁剑英, 黄成刚, 曹正林 , 等. 咸化湖盆白云岩碳氧同位素特征及古环境意义——以柴西地区始新统下干柴沟组为例[J]. 地球化学, 2015,44(3):254-266.
[21] YUAN J Y, HUANG C G, CAO Z L , et al. Carbon and oxygen isotopic composition of saline lacustrine dolomite and its palaeoenvironmental significance: A case study of Lower Eocene Ganchaigou Formation in western Qaidam Basin[J]. Geochimica, 2015,44(3):254-266.
[22] TAYLOR H P, FRECHEN J, DEGENS E T . Oxygen and carbon isotope studies of carbonatites from the Laacher See District, West Germany and the Aln? District, Sweden[J]. Geochimica Et Cosmochimica Acta, 1967,31(3):407-430.
[23] VEIZER J, HOEFS J . The nature of O18/O16, and C13/C12, secular trends in sedimentary carbonate rocks[J]. Geochimica Et Cosmochimica Acta, 1976,40(11):1387-1395.
[24] KELTS K, TALBOT M . Lacustrine carbonates as geochemical archives of environmental change and biotic/abiotic interactions[M] // Max M. Tilzer, Colette Serruya. Large Lakes: Ecological structure and function. Berlin Heidelberg: Springer-Verlag, 1990.
[25] 曹剑, 胡文瑄, 姚素平 , 等. 准噶尔盆地石炭—二叠系方解石脉的碳、氧、锶同位素组成与含油气流体运移[J]. 沉积学报, 2007,25(5):722-729.
[25] CAO J, HU W X, YAO S P , et al. Carbon, oxygen and strontium isotope composition of calcite veins in the carboniferous to permian source sequences of the Junggar Basin: Implications on petroleum fluid migration[J]. Acta Sedimentologica Sinica, 2007,25(5):722-729.
[26] 郭佳, 曾溅辉, 宋国奇 , 等. 东营凹陷中央隆起带沙河街组碳酸盐胶结物发育特征及其形成机制[J]. 地球科学, 2014,39(5):565-576.
[26] GUO J, ZENG J H, SONG G Q , et al. Characteristics and origin of carbonate cements of Shahejie Formation of central uplift belt in Dongying Depression[J]. Editorial Committee of Earth Science-Journal of China University of Geosciences, 2014,39(5):565-576.
[27] 戴金星, 戚厚发, 宋岩 , 等. 我国煤层气组份、碳同位素类型及其成因和意义[J]. 中国科学(B辑), 1986,37(12):85-94.
[27] DAI J X, QI H F, SONG Y , et al. Formation and significance of coalbed methane components and carbon isotopes in China[J]. Science in China(Series B), 1986,37(12):85-94.
[28] FRANKS S G, DIAS R F, FREEMAN K H , et al. Carbon isotopic composition of organic acids in oil field waters, San Joaquin Basin, California, USA[J]. Geochimica et Cosmochimica Acta, 2001,65(8):1301-1310.
[29] 刘存革, 李国蓉, 朱传玲 , 等. 塔河油田中下奥陶统岩溶缝洞方解石碳、氧、锶同位素地球化学特征[J]. 地球科学(中国地质大学学报), 2008,33(3):377-386.
[29] LIU C G, LI G R, ZHU C L , et al. Geochemistry Characteristics of Carbon,Oxygen and Strontium Isotopes of Calcites Filled in Karstic Fissure-Cave in Lower-Middle Ordovician of Tahe Oilfield,Tarim Basin[J]. Editorial Committee of Earth Science-Journal of China University of Geosciences, 2008,33(3):377-386.
[30] 宋土顺, 马锋, 刘立 , 等. 大庆长垣扶余油层砂岩中方解石胶结物的碳、氧同位素特征及其成因[J]. 石油与天然气地质2015, 36(2):255-261.
[30] SONG T S, MA F, LIU L , et al. Features and genesis of carbon-oxygen isotopes in calcite cement from sandstone in oil-bearing Fuyu layer of Daqing Placanticline[J]. Oil & Gas Geology, 2015,36(2):255-261.
[31] 陈强, 张慧元, 李文厚 , 等. 鄂尔多斯奥陶系碳酸盐岩碳氧同位素特征及其意义[J]. 古地理学报, 2012,14(1):117-124.
[31] CHEN Q, ZHANG H Y, LI W H , et al. Characteristics of carbon and oxygen isotopes of the Ordovician carbonate rocks in Ordos and their implication[J]. Journal of Palaeogeography, 2012,14(1):117-124.
[32] SHACKLETON N J, KENNETT J P . Paleotemperature history of the cenozoic and the initiation of Antarctic glaciation: Oxygen and carbon isotope analysis in DSDP sites 277,279 and 281[C]. In: kennett I P, et al. Initial reports of the DSDP 29, washington D C, US Government Priming Office, 1975: 743-755.
[33] 张顺存, 郭建钢, 刘巍 , 等. 克百断裂下盘二叠系砂砾岩中碳酸盐胶结物的氧、碳稳定同位素组成及形成环境分析[J]. 新疆地质, 2009,27(4):359-363.
[33] ZHANG S C, GUO J G, LIU W , et al. Carbon and oxygen stable isotopic composition of carbonate cementation in permian rudite of the footwall of kebai-fault[J]. Xinjiang Geology, 2009,27(4):359-363.
文章导航

/