常规油气

渤海LD5-2油藏复合调驱效果物理模拟实验研究

  • 张楠 ,
  • 卢祥国 ,
  • 刘进祥 ,
  • 葛嵩 ,
  • 刘义刚 ,
  • 张云宝 ,
  • 李彦阅
展开
  • 1.东北石油大学提高油气采收率教育部重点实验室,黑龙江 大庆 163318
    2.中海石油(中国)有限公司湛江分公司,广东 湛江 524057
    3.中海石油(中国)有限公司天津分公司,天津 300450
张楠(1995 —),男,在读硕士研究生,主要从事提高采收率技术研究。通讯地址:黑龙江省大庆市龙凤区东北石油大学石油工程学院,邮政编码:163318 。Email:nihaozhangxiansen@163.com

收稿日期: 2019-09-06

  网络出版日期: 2020-08-07

基金资助

“十三五”重大科技专项“渤海双高油田多级窜逸堵调驱一体化技术研究及示范”(2016ZX05058-003-010);中海石油(中国)有限公司天津分公司“强化水驱调驱技术研究与应用”(CCL2018TJTZDST0435)

Physical simulation experiment study on effect of profile modification in Bohai LD5-2 reservoir

  • Nan ZHANG ,
  • Xiangguo LU ,
  • Jinxiang LIU ,
  • Song GE ,
  • Yigang LIU ,
  • Yunbao ZHANG ,
  • Yanyue LI
Expand
  • 1. Key Laboratory of Enhanced Oil Recovery of Education Ministry, Northeast Petroleum University, Daqing, Heilongjiang 163318, China
    2. Cnooc(China) Co., LTD. Zhanjiang Branch, Zhanjiang, Guangdong 524057, China
    3. Cnooc(China) Co., LTD. Tianjin Branch, Tianjin 300450, China

Received date: 2019-09-06

  Online published: 2020-08-07

摘要

渤海LD5-2稠油油藏非均质性较强、岩石胶结强度较低,长期注水开发已经形成了优势通道。目前,单一调剖、调驱或驱油措施很难满足大幅度提高采收率的要求,将调剖、调驱和驱油等措施联合使用成为解决这一瓶颈的新思路。为满足LD5-2油藏的实际需求,该实验利用纵向三层非均质岩心及“分注分采”新型模型,借助电极测量等手段,开展了“调剖+调驱+驱油”复合调驱室内实验研究。结果表明,与直井井网相比较,水平井井网调剖后中低渗透层吸液压差较大,扩大波及体积效果较好,采收率增幅28.50 %。对于非均质岩心,调驱后剩余油纵向上主要分布在中低渗透层。平面上,直井井网主要分布在远离主流线的两翼部位,水平井井网油水界面则平行于井眼轨迹。“复合凝胶+微球/高效驱油剂”段塞组合中,复合凝胶在高渗透层内滞留作用较强,液流转向效果较好,使得后续“微球/高效驱油剂”2者之间的协同效应得以较好发挥,这兼顾了扩大波及体积和提高洗油效率技术需求,因而增油降水效果明显,采收率增幅26.50 %。复合调驱是大幅度提高采收率的关键。

本文引用格式

张楠 , 卢祥国 , 刘进祥 , 葛嵩 , 刘义刚 , 张云宝 , 李彦阅 . 渤海LD5-2油藏复合调驱效果物理模拟实验研究[J]. 油气藏评价与开发, 2020 , 10(4) : 119 -124 . DOI: 10.13809/j.cnki.cn32-1825/te.2020.04.019

Abstract

Bohai LD5-2 heavy oil reservoir has strong heterogeneity and low rock cementation strength. It has formed a dominant channel due to long-term water injection. At present, it is difficult to meet the requirements of greatly improving oil recovery by single profile control, flooding or oil displacement measures. The combined use of profile control, displacement and other measures has become a new way to solve this bottleneck. In order to meet the actual demands of LD5-2 reservoir, in-room experimental study of profile modification measure of “profile control+profile modify+oil displacement” is carried out by the longitudinal three-layer heterogeneous core and a new model of “injection and production separately” and the means of electrode measurement. The results show that, compared with the vertical well network, the hydraulic pressure difference of the mid-low permeability layer is larger after the horizontal well network profile adjustment, the effect of expanding the spreading volume is better, and the recovery rate increases by 28.50 %. For the heterogeneous cores, the remaining oil in the longitudinal direction is mainly distributed in the mid-low permeability layers. On the plane, the vertical well pattern is mainly distributed in the two wings away from the main stream line, while the horizontal well network oil-water interface is parallel to the well trajectory. The composite gel in the slug combination of “composite gel+microsphere/high efficiency oil displacing agent” has a strong retention effect in the high permeability layers. The liquid flow steering effect is better, which makes the synergistic effect in the subsequent “microsphere/high efficiency oil displacing agent” composite system better. It takes into account the technical requirements of expanding the volume and improving the washing efficiency, and the effect of increasing oil and precipitation is obvious, with the increase of recovery rate by 26.50 %. Profile modification is the key to increase oil recovery greatly.

参考文献

[1] 王洪关, 何顺利, 冯爱丽 , 等. 插层聚合物凝胶深部液流转向剂的研制与性能评价[J]. 石油学报, 2014,35(1):107-113.
[1] WANG H G, HE S L, FENG A L , et al. A intercalated polymer gel for deep fluid diversion agent and performance evaluation[J]. Acta Petrolei Sinica, 2014,35(1):107-113.
[2] 孙哲 . 聚合物微球油藏适应性评价方法及调驱机理研究[D]. 大庆:东北石油大学, 2017.
[2] SUN Z . Research on the evalution method of polymer microsphere reservoir adaptability and the profile control and displacement mechanism[D]. Heilongjiang: North Petroleum University, 2017.
[3] 金玉宝, 卢祥国, 谢坤 , 等. 聚合物微球油藏适应性评价方法及调驱机理研究[J]. 石油化工, 2017,46(7):925-933.
[3] JIN Y B, LU X G, XIE K , et al. Polymer microspheres reservoir adaptability evaluation method and the mechanism of oil displacement[J]. Petrochemical Technology, 2017,46(7):925-933.
[4] 李粉丽, 侯吉瑞, 刘应辉 , 等. 改性淀粉强凝胶堵剂的研制[J]. 大庆石油地质与开发, 2007,26(2):80-82.
[4] LI F L, HOU J R, LIU Y H , et al. Preparation for strong gels plugging agent of modified starch[J]. Petroleum Geology and Oilfield Development in Daqing, 2007,26(2):80-82.
[5] 曹功泽, 侯吉瑞, 岳湘安 , 等. 改性淀粉-丙烯酰胺接枝共聚调堵剂的动态成胶性能[J]. 油气地质与采收率, 2008,15(5):72-74.
[5] CAO G Z, HOU J R, YUE X A , et al. Dynamic gelling property of modified graft starch-acrylamide copolymer as profile control/water shutoff agent[J]. Petroleum Geology and Recovery Efficiency, 2008,15(5):72-74.
[6] 曹伟佳, 卢祥国, 苏鑫 , 等. 空间尺寸对淀粉接枝共聚物凝胶成胶效果影响及作用机理——以渤海绥中36-1油田为例[J]. 油气地质与采收率, 2018,25(4):93-99.
[6] CAO W J, LU X G, SU X , et al. Effect of space size on gel formation of starch graft copolymer and its mechanism: taking the reservoirs of sz36-1block in Bohai Oilfield as an example[J]. Petroleum Geology and Recovery Efficiency, 2018,25(4):93-99.
[7] 王婷婷, 卢祥国, 陈阳 , 等. 渤海油田大尺寸优势通道封堵剂性能评价[J]. 油气地质与采收率, 2017,24(6):103-107.
[7] WANG T T, LU X G, CHEN Y , et al. performance evaluation of plugging agent for large-size prefenrential channels in Bohai Oilfield[J]. Petroleum Geology and Recovery Efficiency, 2017,24(6):103-107.
[8] 刘义刚, 徐文江, 姜维东 . 海上油田调驱技术研究与实践[J]. 石油科技论坛, 2014,33(3):41-44.
[8] LIU Y G, XU W J, JIANG W D . Study of flooding technology for offshore oilfields pipelines[J]. Oil Forum, 2014,33(3):41-44.
[9] 潘广明, 吴金涛, 张彩旗 , 等. 海上稠油油藏弱凝胶驱辅助吞吐增油效果研究[J]. 特种油气藏, 2017,24(6):134-138.
[9] PAN G M, WU J T, ZHANG C Q , et al. Oil enhancement analysis of weak-gel-assisted soak in offshore heavy oil reservoir[J]. Special Oil & Gas Reservoirs, 2017,24(6):134-138.
[10] 廖月敏, 付美龙, 杨松林 . 耐温抗盐凝胶堵水调剖体系的研究与应用[J]. 特种油气藏, 2019,26(1):158-162.
[10] LIAO Y M, FU M L, YANG S L . Study and application of water plugging and profile control system of heat and salt resistant gel[J]. Special Oil & Gas Reservoirs, 2019,26(1):158-162.
[11] 张继红, 贾飞 . 弱凝胶深部调驱可视化驱油实验研究[J]. 科学技术与工程, 2018,18(29):54-58.
[11] ZHANG J H, JIA F . Experimental study on visual displacement of deep profile control with weak gel[J]. Science Technology and Engineering, 2018,18(29):54-58
[12] 王西强, 郝栋, 刘智玮 , 等. HJ油田侏罗系油藏聚合物微球调驱技术矿场实践[J]. 油田化学, 2018,35(3):417-421.
[12] WANG X Q, HAO D, LIU Z W , et al. Field practice of polymer microspheres deep profile control technique in Jurassic reservoirs in HJ Oilfield[J]. Oilfield Chemistry, 2018,35(3):417-421.
[13] 杨昌华 . 污泥凝胶颗粒调驱剂的研制及应用[J]. 油田化学, 2018,35(3):422-426.
[13] YANG C H . Development and application of profile control and oil displacement agent contained oil sludge filled gel particle[J]. Oilfield Chemistry, 2018,35(3):422-426.
[14] 王平美, 罗健辉, 林远平 , 等. 低渗透裂缝型油田长效智能深部调驱技术[J]. 油田化学, 2018,35(2):252-256.
[14] WANG P M, LUO J H, LIN Y P , et al. Long term intelligent in-depth profile control technology for low permeability fractured oilfield[J]. Oilfield Chemistry, 2018,35(2):252-256.
[15] 卢祥国, 高振环, 闫文华 . 人造岩心渗透率影响因素试验研究[J]. 大庆石油地质与开发, 1994,13(4):53-55.
[15] LU X G, GAO Z H, YAN W H . Experimental study of factors influencing permeability of artificial core[J]. Petroleum Geology and Oilfield Development in Daqing, 1994,13(4):53-55
[16] 卢祥国, 宋合龙, 王景盛 , 等 .石英砂环氧树脂胶结非均质模型制作方法:中国, ZL200510063665.8[P]. 2005 -09-07.
[16] LU X G, SONG H L, WANG J S , et al. Process for making quartz sand epoxy resin cementations non-homogeneous model: China, ZL200510063665.8[P]. 2005-09-07.
[17] 鲍文博, 卢祥国, 刘义刚 , 等. 微球/高效驱油剂复合驱油体系增油效果及作用机理[J]. 石油化工, 2019,48(8):843-849.
[17] BAO W B, LU X G, LIU Y G , et al. Oil increasing effect and mechanism of polymer microspheres/high efficiency oil displacement agent composite flooding system[J]. Petrochemical Technology, 2019,48(8):843-849.
[18] 王修朝 . 致密砂岩气藏井型优化方法[J]. 大庆石油地质与开发, 2018,37(4):166-170.
[18] WANG X C . Optimizing method of the well type in tight sandstone gas reservoirs[J]. Petroleum Geology and Oilfield Development in Daqing, 2018,37(4):166-170.
[19] 田鸿照 . 水平井注采井网和注采参数优化研究[J]. 石油化工应用, 2016,35(8):6-9.
[19] WANG H Z . Optimization of horizontal injection-production well pattern and parameter[J]. Petrochemical Industry Application, 2016,35(8):6-9.
[20] 张颖苹 . 稠油油藏聚合物驱剖面反转现象室内实验[J]. 特种油气藏, 2016,23(6):111-114.
[20] ZHANG Y P . Laboratory experiment of profile inversion regulation in heavy-oil reservoir with polymer flooding[J]. Special Oil & Gas Reservoir, 2016,23(6):111-114.
文章导航

/