工程工艺

可控冲击波解堵增透技术在延川南煤层气田中的应用

  • 王喆
展开
  • 中国石化华东油气分公司勘探开发研究院,江苏 南京 210019
王喆(1988 —),男,硕士,助理工程师,主要从事非常规油气研究工作。通讯地址:江苏省南京市建邺区江东中路375号金融城9号楼,邮政编码:210019。E-mail: 625205326@qq.com

收稿日期: 2020-03-20

  网络出版日期: 2020-08-07

基金资助

中国石化科技部项目“延川南深层煤层气稳产技术研究”(P19019-4)

Application of controllable shock wave plugging removal and permeability improvement technology in CBM gas field of Southern Yanchuan

  • Zhe WANG
Expand
  • Research Institute of Exploration and Development, Sinopec East China Oil and Gas Company, Nanjin, Jiangsu 210019, China

Received date: 2020-03-20

  Online published: 2020-08-07

摘要

为解决延川南区块煤层气井煤粉堵塞、产气量低等问题,开展了可控冲击波解堵增透技术的应用试验。选取4口典型井,进行了施工过程中的地质和工程参数分析,及实施前后产气量、产水量的对比分析。结果表明,可控冲击波解堵增透技术应用于煤层气井中可以提高液体流动性,促进气体解吸扩散,并且可以解堵煤储层。可控冲击波解堵增透技术的选井标准是煤层破裂压力较低、压裂改造效果好、含有夹矸、煤层含气性好和地层压力系数相对较高等。该技术具有造缝与解堵作用,可提高地层液体流动性,清除地层污染,在延川南煤层气井近井地带解堵、提升产量方面也有较好的实施效果和应用前景,并且有望成为低产、低效井的一项新型增产技术。

本文引用格式

王喆 . 可控冲击波解堵增透技术在延川南煤层气田中的应用[J]. 油气藏评价与开发, 2020 , 10(4) : 87 -92 . DOI: 10.13809/j.cnki.cn32-1825/te.2020.04.013

Abstract

In order to solve the problems such as coal blockage and low gas production of coalbed methane wells in the Southern Yanchuan block, an application test of controlled shock wave plugging removal and permeability improvement technology is carried out. Therefore, four typical wells are selected to analyze the geological and engineering parameters in the construction process, as well as comparative analysis of the gas and water production before and after the implementation. The results show that the application of controllable shock wave plugging removal and permeability improvement technology in coalbed methane wells can improve liquid fluidity, promote gas desorption and diffusion, and remove plugging in coal reservoirs. The well selection criteria of this technology are low coalbed fracture pressure, good fracturing effect, including dirt band, high gas-bearing capacity of coalbed, relatively high formation pressure coefficient, etc. This technology has the effect of creating fractures and removing plugs, which can improve the fluidity of formation fluids and remove formation pollution. It has a good implementation effect and application prospect in the near-well zone of south Yanchuan coalbed methane wells to plugging removal and increase gas production, and is expected to be a new stimulation technology for low yield and efficiency wells.

参考文献

[1] 方志雄 . 延川南煤层气田勘探开发关键技术及应用[M]. 北京: 地质出版社, 2017: 9-20.
[1] FANG Z X. Key technologies and application of expiation and development and development of south Yanchuan gas field[M]. Beijing: Geological Publishing House, 2017: 9-20.
[2] 邱爱民, 张波, 邱爱利 , 等. 煤层气多分支井成井失效分析及补救措施研究[J]. 非常规油气, 2018,5(3):88-92.
[2] QIU A M, ZHANG B, QIU A L , et al. Drilling failure analysis and remedial measures of coalbed methane multiple laterals wells[J]. Unconventional Oil & Gas, 2018,5(3):88-92.
[3] 卢凌云, 张遂安, 郭文朋 , 等. 煤层气直井低产原因与高产因素诊断分析[J]. 非常规油气, 2017,4(5):71-75.
[3] LU L Y, ZHANG S A, GUO W P , et al. The diagnosis and analysis of the low-yield cause and high-yield factor of vertical well in coalbed methane[J]. Unconventional Oil & Gas, 2017,4(5):71-75.
[4] 郭智栋, 曾雯婷, 方惠军 , 等. 重复脉冲强冲击波技术在煤储层改造中的初步应用[J]. 中国石油勘探, 2019,24(3):397-402.
[4] GUO Z D, ZENG W T, FANG H J , et al. Initial application of intense repeated pulse wave for stimulating CBM reservoirs[J]. China Petroleum Exploration, 2019,24(3):397-402.
[5] 田守嶒, 黄中伟, 李根生 , 等. 径向井复合脉动水力压裂煤层气储层解堵和增产室内实验[J]. 天然气工业, 2018,38(9):88-94.
[5] TIAN S C, HUANG Z W, LI G S , et al. Laboratory experiments on blockage removing and stimulation of CBM reservoirs by composite pulsating fracturing of radial horizontal wells[J]. Natural Gas Industry, 2018,38(9):88-94.
[6] 武杰, 田永东 . 高聚能电脉冲技术在沁水盆地煤层气井的应用[J]. 煤田地质与勘探, 2018,46(5):206-211.
[6] WU J, TIAN Y D . Application of high energy electric pulse technology in coalbed methane wells in Qinshui basin[J]. Coal Geology and Exploration, 2018,46(5):206-211.
[7] 张聪, 李梦溪, 王立龙 , 等. 沁水盆地南部樊庄区块煤层气井增产措施与实践[J]. 天然气工业, 2011,31(11):26-29.
[7] ZHANG C, LI M X, WANG L L , et al. EOR measures for CBM gas wells and their practices in the Fangzhuang Block, southern Qinshui Basin[J]. Natural Gas Industry, 2011,31(11):26-29.
[8] 韩学婷, 张兵, 叶建平 . 煤层气藏CO2-ECBM注入过程中CO2相态变化分析及应用——以沁水盆地柿庄北区块为例[J]. 非常规油气, 2018,5(1):80-85.
[8] HAN X T, ZHANG B, YE J P . Analysis and application of CO2 phase change during CO2-ECBM injection in CBM——Taking the study of Shizhuang North Block in Qinshui Basin as an example[J]. Unconventional Oil & Gas, 2018,5(1):80-85.
[9] 王勃, 姚红星, 王红娜 , 等. 沁水盆地成庄区块煤层气成藏优势及富集高产主控地质因素[J]. 石油与天然气地质, 2018,39(2):366-372.
[9] WANG B, YAO H X, WANG H N , et al. Favorable and major geological controlling factors for coalbed methane accumulation and high production in the Chengzhuang Block, Qinshui Baisn[J]. Oil & Gas Geology, 2018,39(2):366-372.
[10] 刘羽欣 . 柿庄北区块煤层气井排采制度研究[J]. 特种油气藏, 2019,26(5):118-123.
[10] LIU Y X . Drainage gas recovery system of CBM well in the north Shizhuang block[J]. Special Oil & Gas Reservoirs, 2019,26(5):118-123.
[11] 张永民, 邱爱慈, 秦勇 . 可控冲击波增透松软煤层的工程实践[J]. 山西焦煤科技, 2017,41(8):116-121.
[11] ZHANG Y M, QIU A C, QIN Y . Engineering practice on controllable shock wave reinforcement on soft coal seam[J]. Shanxi Coking Coal Science & Technology, 2017,41(8):116-121.
[12] 王向东, 李文刚 . 吉宁煤矿可控冲击波增透技术应用分析[J]. 山西焦煤科技, 2019,43(2):4-7.
[12] WANG X D, LI Y G . Application analysis of controlled shock wave penetration enhancement technology in Jining Coal Mine[J]. Shanxi Coking Coal Science & Technology, 2019,43(2):4-7.
[13] 张永民, 蒙祖智, 秦勇 , 等. 松软煤层可控冲击波增透瓦斯抽采创新实践——以贵州水城矿区中井煤矿为例[J]. 煤炭学报, 2019,44(8):2388-2400.
[13] ZHANG Y M, MENG Z Z, QIN Y , et al. Innovative engineering practice of soft coal seam permeability enhancement by controllable shock wave for mine gas extraction: A case of Zhongjing Mine, Shuicheng, Guizhou Province, China[J]. Journal of China Coal Society, 2019,44(8):2388-2400.
[14] 张永民, 邱爱慈, 秦勇 . 电脉冲可控冲击波煤储层增透原理与工程实践[J]. 煤炭科学技术, 2017,45(9):79-85.
[14] ZHANG Y M, QIU A C, QIN Y . Principle and engineering practices on coal reservoir permeability improved with electric pulse controllable shock waves[J]. Coal Science and Technology, 2017,45(9):79-85.
[15] 张波 . 可控冲击波如何实现煤层增透[N]. 中国煤炭报, 2018-3-31(4).
[15] ZHANG B . How controllable shock wave realizes anti-reflection in coal seams[N]. China Coal News, 2018-3-31(4).
[16] 白建梅, 程浩, 祖世强 , 等. 大功率脉冲技术对低产煤层气井增产可行性探讨[J]. 中国煤层气, 2010,7(6):24-26.
[16] BAI J M, CHENG H, ZU S Q , et al. Discussion on feasibility of enhanceing production of low-production CBM wells by using powerful pulse techniques[J]. China Coalbed Methane, 2010,7(6):24-26.
[17] 邓钧耀, 杨松, 曹振义 , 等. 鄂尔多斯东缘深层煤层气井新型堵漏工艺研究[J]. 石油机械, 2019,47(9):37-43.
[17] DENG J Y, YANG S, CAO Z Y , et al. Study on new lost circulation control technology for deep coalbed methane wells in the eastern margin of Ordos[J]. China Petroleum Machinery, 2019,47(9):37-43.
文章导航

/