油气藏评价与开发 >
2020 , Vol. 10 >Issue 4: 93 - 96
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2020.04.014
煤层气压裂用低密度坚果壳支撑剂性能评价与现场试验
收稿日期: 2020-05-07
网络出版日期: 2020-08-07
Performance evaluation and field test of low-density nut shell proppant in CBM fracturing
Received date: 2020-05-07
Online published: 2020-08-07
魏伟 . 煤层气压裂用低密度坚果壳支撑剂性能评价与现场试验[J]. 油气藏评价与开发, 2020 , 10(4) : 93 -96 . DOI: 10.13809/j.cnki.cn32-1825/te.2020.04.014
At present, the clean quartz sand is used in the fracturing of southern Yanchuan CBM wells. According to the production effect in the early stage, the limited length of supporting seam generated by the clean quartz sand fracturing leads to the difficulty of adding sand in the construction, and the gas production effect in the later stage is not ideal. In order to solve this problem, laboratory experiments have been conducted to compare and evaluate the crushing and fracture conductivity of conventional quartz sand proppant and low-density nut shell proppant under different closing pressures. The experimental results show that the fracturing rates of both can meet the engineering requirements. Under high closure stress(35 MPa), they have similar fracture conductivity. However, low-density nut shell proppant is cheaper than traditional quartz sand. Therefore, low-density nut shell proppant is more able to meet the current goal of cost reduction and production increase. The field test of this technology has obtained good results.
Key words: coal bed methane; low-density; proppant; fracturing; nut shell
[1] | 马新仿, 张士诚 . 水力压裂技术的发展现状[J]. 河南石油, 2002,16(1):44-47. |
[1] | MA X F, ZHANG S C . Status of development of hydraulic fracturing technologies[J]. Henan Petroleum, 2002,16(1):44-47. |
[2] | 贾旭楠 . 支撑剂的研究现状及展望[J]. 石油化工应用, 2017,36(9):1-6. |
[2] | JIA X N . Overview of the proppant development and prospect[J]. Petrochemical Industry Application, 2017,36(9):1-6. |
[3] | 贾新勇 . 我国支撑剂的发展应用及现状[J]. 企业技术开发, 2011,30(19):105-106. |
[3] | JIA X Y . The applications and agent status of propping agent in China[J]. Technological Development of Enterprise, 2011,30(19):105-106. |
[4] | 张遂安, 张典坤, 彭川 , 等. 中国煤层气产业发展障碍及其对策[J]. 天然气工业, 2019,39(4):118-124. |
[4] | ZHANG S A, ZHANG D K, PENG C , et al. Obstacles to the development of CBM industry and countermeasures in China[J]. Natural Gas Industry, 2019,39(4):118-124. |
[5] | 刘智恪, 谭锐, 牛增前 , 等. 山西煤层气井压裂工艺技术与研究[J]. 油气井测试, 2014,23(2):45-47. |
[5] | LIU Z K, TAN R, NIU Z Q , et al. Introduction of fracturing technology for Shanxi CBM well and its research[J]. Well Testing, 2014,23(2):45-47. |
[6] | 陆松嵩, 杨宇, 李东 , 等. 煤层气降滤失工艺技术研究[J]. 石油化工应用, 2014,33(12):66-68. |
[6] | LU S S, YANG Y, LI D , et al. The research of the technology of reducing fluid loss during the development of coal bed methane[J]. Petrochemical Industry Application, 2014,33(12):66-68. |
[7] | 吴信波, 王谦, 张俊 . 彬长矿区煤层气井水力压裂效果影响因素分析[J]. 非常规油气, 2017,4(6):100-104. |
[7] | WU X B, WANG Q, ZHANG J . Analysis on influencing factors of hydraulic fracturing effect of coalbed methane wells in Binchang Mining Area[J]. Unconventional Oil & Gas, 2017,4(6):100-104. |
[8] | 郑力会, 李秀云, 苏关东 , 等. 煤层气工作流体储层伤害评价方法的适宜性研究[J]. 天然气工业, 2018,38(9):28-39. |
[8] | ZHENG L H, LI X Y, SU G D , et al. Applicability of working fluid damage assessment methods for coalbed methane reservoirs[J]. Natural Gas Industry, 2018,38(9):28-39. |
[9] | 黄禹忠, 任山, 林永茂 , 等. 川西马井气田蓬莱镇组气藏储层改造技术研究应用[J]. 钻采工艺, 2007,30(1):35-37. |
[9] | HUANG Y X, REN S, LIN Y M , et al. Applied research on stimulation technology in Penglaizhen formation in Majing gas field of west Sichan[J]. Drilling & Production Technology, 2007,30(1):35-37. |
[10] | 李小刚, 廖梓佳, 杨兆中 , 等. 压裂用低密度支撑剂及研究进展和发展趋势[J]. 硅酸盐通报, 2018,37(10):3132-3135. |
[10] | LI X G, LIAO Z J, YANG Z Z , et al. Development and prospect of fracturing lightweight proppants[J]. Bulletin of the Chinese Ceramic Society, 2018,37(10):3132-3135. |
[11] | 陶红胜, 王满学, 杏毅 , 等. 低黏度清洁压裂液黏弹性与悬砂能力的关系[J]. 油田化学, 2015,32(4):494-498. |
[11] | TAO H S, WANG M X, XING Y , et al. Relationship between suspended proppant ability and viscoelasticity of clean fracturing fluid with low viscosity[J]. Oilfield Chemistry, 2015,32(4):494-498. |
[12] | 肖博, 张士诚, 郭天魁 , 等. 页岩气藏清水压裂悬砂效果提升实验[J]. 东北石油大学学报, 2013,37(3):94-99. |
[12] | XIAO B, ZHANG S C, GUO T K , et al. Laboratory experiment on the method for improving proppant-carrying capacity of slickwater fracturing in shale gas reservoirs[J]. Journal of Northeast Petroleum University, 2013,37(3):94-99. |
[13] | 温庆志, 罗明良, 李佳娜 , 等. 压裂支撑剂在裂缝中的沉降规律[J]. 油气地质与采收率, 2009,16(3):100-103. |
[13] | WEN Q Z, LUO M L, LI J N , et al. Principle of proppant settlement in fracture[J]. Petroleum Geology and Recovery Efficiency, 2009,16(3):100-103. |
[14] | 刘钰豪, 徐永驰, 陈泓洁 . 煤层气压裂中支撑剂沉降模型的对比与优选[J]. 当代化工, 2015,44(6):1253-1256. |
[14] | LIU Y H, XU Y C, CHEN H J . Comparison and selection of proppant settling models in the CBM fracturing[J] Contemporary Chemical Industry, 2015,44(6):1253-1256. |
[15] | LIANG F, SAYED M, AL-MUNTASHERI G , et al. Overview ofexisting proppant technologies and challenges[C]// paper SPE-172763-MS presented at the SPE Middle East Oil & Gas Show and Conference, 8-11 March 2015, Manama, Bahrain. |
[16] | 岳俊磊 . 超低密高强度压裂支撑剂的制备及性能研究[D]. 太原:太原理工大学, 2017. |
[16] | YUE J L . Preparation and properties of ultra-light weight and high strength fracturing proppant[D]. Taiyuan: Taiyuan University of Technology, 2017. |
[17] | LI D, WANG J H . Estimation of proppant size distribution using image analysis[J]. Particulate Science & Technology, 2015,33(5):517-521. |
[18] | 梁莹, 罗斌, 黄霞 . 水力压裂低密度支撑剂铺置规律研究及应用[J]. 钻井液与完井液, 2018,35(3):110-113. |
[18] | LIANG Y, LUO B, HUANG X . Study on distribution of low density proppants in hydraulic fracturing operations and the application thereof[J]. Drilling Fluid & Completion Fluid, 2018,35(3):110-113. |
[19] | GU M, DAO E, MOHANTY K K . Investigation of ultra-light weight proppant application in shale fracturing[J]. Fuel, 2015,150:191-201. |
[20] | STANCIU C, VO L K, NGUYEN P D , et al. Maintaining we11 productivity through controlling fines migration and scale formation[C]// paper SPE-174364-MS presented at the EUROPEC 2015, 1-4 June 2015, Madrid, Spain. |
/
〈 | 〉 |