专家论坛

差异保存条件下页岩孔隙结构特征演化及其意义

  • 刘树根 ,
  • 叶玥豪 ,
  • 冉波 ,
  • 姜磊 ,
  • 李智武 ,
  • 李金玺 ,
  • 宋金民 ,
  • 焦堃 ,
  • 李泽奇 ,
  • 李煜伟
展开
  • 1.成都理工大学油气藏地质及开发工程国家重点实验室,四川 成都 610059
    2.西华大学,四川 成都 610039
    3.广东石油化工学院,广东 茂名 525000
    4.中国水利水电第七工程局有限公司,四川 成都 611730
刘树根(1964—),男,博士,教授,本刊编委,主要从事石油地质学与构造地质学的教学与科研工作。地址:四川省成都市成华区二仙桥东三段1号,邮政编码:610059 。E-mail: lsg@cdut.edu.cn

收稿日期: 2020-06-10

  网络出版日期: 2020-09-24

基金资助

四川省科技厅应用基础研究项目“四川盆地深层海相页岩储层特征”(2018JY0437)

Evolution and implications of shale pore structure characteristics under different preservation conditions

  • Shugen LIU ,
  • Yuehao YE ,
  • Bo RAN ,
  • Lei JIANG ,
  • Zhiwu LI ,
  • Jinxi LI ,
  • Jinmin SONG ,
  • Kun JIAO ,
  • Zeqi LI ,
  • Yuwei LI
Expand
  • 1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, CDUT, Chengdu, Sichuan 610059, China
    2. Xihua University, Chengdu, Sichuan 610039, China
    3. Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
    4. Sinohydro Bureau 7CO., LTD, Chengdu, Sichuan 611730, China

Received date: 2020-06-10

  Online published: 2020-09-24

摘要

鉴于保存条件和页岩孔隙演化对页岩气勘探开发的重要性,对页岩气保存条件和页岩孔隙结构演化之间关系的研究有着重要的科学意义和学术价值。通过氩离子抛光、扫描电镜和氮气吸附等方法对具有差异保存条件的黑色页岩开展孔隙结构特征和演化研究,发现不同保存条件下黑色页岩孔隙结构存在较大差异。这种差异是在后期抬升过程中保存条件的差异所致,具体表现在:①保存条件好和保存条件差的黑色页岩无机孔均发育较少,原始粒间孔绝大多数被生成的烃类充填,两者之间无机孔隙特征基本相似;②两者有机质孔差异较大,保存条件较好的黑色页岩有机质孔孔径大,形状多成圆状或气泡状。保存条件遭到破坏的黑色页岩有机质孔孔径相对较小或不发育、形状多样,多成扁平状、多边形状,具有一定压扁变形的特征;③保存条件好的黑色页岩孔隙体积和比表面积优于保存条件遭到破坏的黑色页岩;④黑色页岩的孔隙演化受保存条件的影响,孔隙在演化过程中,页岩的岩相和成岩作用控制黑色岩原始孔隙形态和分布,也决定有机质(油)分布形态,有机质热演化(原油裂解)影响了有机质孔的存在,而后期抬升改造过程中保存条件的好坏影响了孔隙结构(形态、大小、孔隙体积分布),因此有机质孔的孔径大小、形状和孔隙度在一定程度反映了富有机质页岩保存条件的优劣。

本文引用格式

刘树根 , 叶玥豪 , 冉波 , 姜磊 , 李智武 , 李金玺 , 宋金民 , 焦堃 , 李泽奇 , 李煜伟 . 差异保存条件下页岩孔隙结构特征演化及其意义[J]. 油气藏评价与开发, 2020 , 10(5) : 1 -11 . DOI: 10.13809/j.cnki.cn32-1825/te.2020.05.001

Abstract

Because of the importance of preservation conditions and shale pore evolution to shale gas exploration and development, it is of great scientific significance and academic value to study the relation between them. The pore structure characteristics and evolution of black shale with different preservation conditions have been studied by means such as argon ion polishing, scanning electron microscope and nitrogen adsorption, and it is found that the pore structure of black shale under different preservation conditions are significantly different. This difference is caused by the difference of preservation conditions in the late uplift process, which is manifested in the following aspects. First, inorganic pores in black shale with good or bad preservation conditions are both less developed, and most of the original intergranular pores are filled with generated hydrocarbons. The inorganic pore characteristics between them are basically similar. Second, the organic pores in black shale are of great difference under different preservation conditions. The diameter of shale organic pores is larger in good preservation conditions, which are in round or bubble shape. While the organic pores are relatively smaller in diameter or totally absent in poor preservation condition, which are in flat or irregular shape with the certain characteristics of flattening and deformation. Third, the pore volume and specific surface area of the black shale under good preservation conditions are better than that under poor conditions. Fourth, the porosity evolution of black shale is affected by preservation conditions. The original pore morphology and distribution are controlled by facies and diagenesis process, and so are the organic matter(oil) distribution form. Thermal evolution of organic matter(oil cracking) influences the existence of organic pores. Whereas, in the late uplifting process, the pore structures(shape, size, pore volume) are affected by the quality of the preservation condition. Therefore, the size, morphology and porosity of the shale organic pores reflect the preservation conditions of shale gas in some extent.

参考文献

[1] 董大忠, 施振生, 管全中, 等. 四川盆地五峰组—龙马溪组页岩气勘探进展、挑战与前景[J]. 天然气工业, 2018,38(4):67-76.
[1] DONG D Z, SHI Z S, GUANG Q Z, et al. Progress, challenges and prospects of shale gas exploration in the Wufeng-Longmaxi reservoirs in the Sichuan Basin[J]. Natural Gas Industry, 2018,38(4):67-76.
[2] 刘树根, 马文辛, LUBA JANSA, 等. 四川盆地东部地区下志留统龙马溪组页岩储层特征[J]. 岩石学报, 2011,27(8):2239-2252.
[2] LIU S G, MA W X, LUBA J, et al. Characteristics of the shale gas reservoir rocks in the Lower Silurian Longmaxi Formation, East Sichuan basin, China[J]. Acta Petrologica Sinica, 2011,27(8):2239-2252.
[3] 郭彤楼, 刘若冰. 复杂构造区高演化程度海相页岩气勘探突破的启示——以四川盆地东部盆缘JY1井为例[J]. 天然气地球科学, 2013,24(4):643-651.
[3] GUO T L, LIU R B. Implications from marine shale gas exploration breakthrough in complicated structural area at high thermal stage: Taking Longmaxi Formation in well JY1 as an example[J]. Natural Gas Geoscience, 2013,24(4):643-651.
[4] 郭彤楼, 张汉荣. 四川盆地焦石坝页岩气田形成与富集高产模式[J]. 石油勘探与开发, 2014,41(1):28-36.
[4] GUO T L, ZHANG H R. Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan Basin[J]. Petroleum Exploration and Development, 2014,41(1):28-36.
[5] 胡东风, 张汉荣, 倪楷, 等. 四川盆地东南缘海相页岩气保存条件及其主控因素[J]. 天然气工业, 2014,34(6):17-23.
[5] HU D F, ZHANG H R, NI K, et al. Main controlling factors for gas preservation conditions of marine shales in southeastern margins of the Sichuan Basin[J]. Natural Gas Geoscience, 2014,34(6):17-23.
[6] 郭旭升, 胡东风, 文治东, 等. 四川盆地及周缘下古生界海相页岩气富集高产主控因素——以焦石坝地区五峰组一龙马溪组为例[J]. 中国地质, 2014,41(3):893-901.
[6] GUO X S, HU D F, WEN Z D, et al. Major factors controlling the accumulation and high productivity in marine shale gas in the Lower Paleozoic of Sichuan Basin and its periphery: A case study of the Wufeng-Longmaxi Formation of Jiaoshiba area[J]. Geology in China, 2014,41(3):893-901.
[7] 郭彤楼. 中国式页岩气关键地质问题与成藏富集主控因素[J]. 石油勘探与开发, 2016,43(3):317-326.
[7] GUO T L. Key geological issues and main controls on accumulation and enrichment of Chinese shale gas[J]. Petroleum Exploration and Development, 2016,43(3):317-326.
[8] 张健, 刘树根, 冉波, 等. 异常高压与页岩气保存[J]. 成都理工大学学报(自然科学版), 2016,43(2):177-187.
[8] ZHANG J, LIU S G, RAN B, et al. Abnormal overpressure and shale gas preservation[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2016,43(2):177-187.
[9] 吴伟, 谢军, 石学文, 等. 川东北巫溪地区五峰组—龙马溪组页岩气成藏条件与勘探前景[J]. 天然气地球科学, 2017,28(5):734-743.
[9] WU W, XIE J, SHI X W, et al. Accumulation condition and exploration potential for Wufeng-Longmaxi shale gas in Wuxi area, northeastern Sichuan Basin[J]. Natural Gas Geoscience, 2017,28(5):734-743.
[10] 舒逸, 陆永潮, 包汉勇, 等. 四川盆地涪陵页岩气田3种典型页岩气保存类型[J]. 天然气工业, 2018,38(3):31-40.
[10] SHU Y, LU Y C, BAO H Y, et al. Three typical types of shale gas preservation in the Fuling Shale Gas Field, Sichuan Basin[J]. Natural Gas Geoscience, 2018,38(3):31-40.
[11] 王进, 包汉勇, 陆亚秋, 等. 涪陵焦石坝地区页岩气赋存特征定量表征及其主控因素[J]. 地球科学, 2019,44(3):1001-1011.
[11] WANG J, BAO H Y, LU Y Q, et al. Quantitative characterization and main controlling factors of Shale Gas Occurrence in Jiaoshiba Area, Fuling[J]. Earth Science, 2019,44(3):1001-1011.
[12] 李金磊, 尹成, 王明飞, 等. 四川盆地涪陵焦石坝地区保存条件差异性分析[J]. 石油实验地质, 2019,41(3):341-347.
[12] LI J L, YIN C, WANG M F, et al. Preservation condition differences in Jiaoshiba area, Fuling, Sichuan Basin[J]. Petroleum Geology & Experiment, 2019,41(3):341-347.
[13] ROSS D J K, BUSTIN R M . The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J]. Marine and Petroleum Geology, 2009,26(6):916-927.
[14] 聂海宽, 张金川, 包书景, 等. 四川盆地及其周缘上奥陶统—下志留统页岩气聚集条件[J]. 石油与天然气地质, 2012,33(3):335-345.
[14] NIE H K, ZHANG J C, BAO S J, et al. Shale gas accumulation conditions of the Upper Ordovician-Lower Silurian in Sichuan Basin and its periphery[J]. Oil & Gas Geology, 2012,33(3):335-345.
[15] 刘树根, 邓宾, 钟勇, 等. 四川盆地及周缘下古生界页岩气深埋藏-强改造独特地质作用[J]. 地学前缘, 2016,23(1):11-28.
[15] LIU S G, DENG B, ZHONG Y, et al. Unique geological features of burial and superimposition of the Lower Paleozoic shale gas across the Sichuan Basin and its periphery[J]. Earth Science Frontiers, 2016,23(1):11-28.
[16] 金之钧, 胡宗全, 高波, 等. 川东南地区五峰组-龙马溪组页岩气富集与高产控制因素[J]. 地学前缘, 2016,23(1):1-10.
[16] JIN Z J, HU Z Q, GAO B, et al. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi formations, southeastern Sichuan Basin[J]. Earth Science Frontiers, 2016,23(1):1-10.
[17] 邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(一)[J]. 石油勘探与开发, 2015,43(2):166-178.
[17] ZOU C N, DONG D Z, WANG Y M, et al. Shale gas in China: Characteristics, challenges and prospects(I)[J]. Petroleum Exploration and Development, 2015,42(6):753-767.
[18] 汤济广, 李豫, 汪凯明, 等. 四川盆地东南地区龙马溪组页岩气有效保存区综合评价[J]. 天然气工业, 2015,35(5):15-23.
[18] TANG J G, LI Y, WANG K M, et al. Comprehensive evaluation of effective preservation zone of Longmaxi Formation shale gas in the Southeast Sichuan Basin[J]. Natural Gas Geoscience, 2015,35(5):15-23.
[19] 程凌云, 雍自权, 王天依, 等. 强改造区牛蹄塘组页岩气保存条件指数评价[J]. 天然气地球科学, 2015,26(12):2408-2416.
[19] CHENG L Y, YONG Z Q, WANG T Y, et al. Evaluation index of shale gas preservation for Niutitang Formation in the strong transformation zone[J]. Natural Gas Geoscience, 2015,26(12):2408-2416.
[20] 姜磊, 邓宾, 刘树根, 等. 焦石坝-武隆构造带古流体活动差异及对页岩气保存条件的影响[J]. 地球科学, 2019,44(2):524-538.
[20] JIANG L, DENG B, LIU S G, et al. Paleo-fluid migration and conservation conditions of shale gas in Jiaoshiba-Wulong Area[J]. Earth Science, 2019,44(2):524-538.
[21] CHOQUETTE P W, PRAY L C . Geologic nomenclature and classification of porosity in sedimentary carbonates1[J]. AAPG Bulletin, 1970,54(2):207-244.
[22] LOUCKS R G, REED R M, RUPPEL S C , et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale[J]. Journal of Sedimentary Research, 2009,79(12):848-861.
[23] 冉波, 刘树根, 孙玮, 等. 四川盆地南缘骑龙村剖面五峰-龙马溪组黑色页岩孔隙大小特征的重新厘定[J]. 成都理工大学学报(自然科学版), 2013,40(5):532-542.
[23] RAN B, LIU S G, SUN W, et al. Redefinition of pore size characteristics in Wufeng Formation-Longmaxi Formation black shale of Qilongcun sectionin southern Sichuan Basin, China[J]. Journal of Chengdu University of Technology(Science& Technology Edition), 2013,40(5):532-542.
[24] ROUQUEROL J, AVNIR D, FAIRBRIDGE C W , et al. Recommendations for the characterization of porous solids[J]. Pure and Applied Chemistry, 1994,66(8):1739-1758.
[25] ZHAO Y X, LIU S M, ELSWORTH D , et al. Pore structure characterization of coal by synchrotron small-angle X-ray scattering and transmission electron microscopy[J]. Energy & Fuels, 2014,28(6):3704-3711.
[26] SONDERGELD C H, RAI C S, CURTIS M E. Relationship between organic shale microstructure and hydrocarbon generation[C]// paper SPE-164540-MS presented at the SPE Unconventional Resources Conference-USA, 10-12 April 2013, The Woodlands, Texas, USA.
[27] JARVIE D M, HILL R J, RUBLE T , et al. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007,91(4):475-499.
[28] SCHIEBER J. Shale microfabrics and pore development: an overview with emphasis on the importance of depositional processes[EB/OL]. (2011-01-15)[2020-05-13]https://sepm04.sitehost.iu.edu/PDF/CSPG_2011_Pores.pdf.
[29] MASTALERZ M, SCHIMMELMANN A, DROBNIAK A , et al. Porosity of Devonian and Mississippian new Albany shale across a maturation gradient: Insights from organic petrology, gas adsorption, and mercury intrusion[J]. AAPG Bulletin, 2013,97(10):1621-1643.
[30] MODICA C J, LAPIERRE S G . Estimation of kerogen porosity in source rocks as a function of thermal transformation: Example from the Mowry Shale in the Powder River Basin of Wyoming[J]. AAPG Bulletin, 2012,96(1):87-108.
[31] CURTIS M E, CARDOTT B J, SONDERGELD C H, et al. The development of organic porosity in the woodford shale as a function of thermal maturity: SPE Annual Technical Conference and Exhibition[C]// paper SPE-160158-MS presented at the SPE Annual Technical Conference and Exhibition, 8-10 October 2012, San Antonio, Texas, USA.
[32] 肖贤明, 宋之光, 朱炎铭, 等. 北美页岩气研究及对我国下古生界页岩气开发的启示[J]. 煤炭学报, 2013,38(5):721-727.
[32] XIAO X M, SONG Z G, ZHU Y M, et al. Summary of shale gas research in North American and revelations to shale gas exploration of Lower Paleozoic strata in China south area[J]. Journal of China Coal Society, 2013,38(5):721-727.
[33] 王玉满, 黄金亮, 王淑芳, 等. 四川盆地长宁、焦石坝志留系龙马溪组页岩气刻度区精细解剖[J]. 天然气地球科学, 2016,27(3):423-432.
[33] WANGY M, HUANG J L, WANG S F, et al. Dissection of two calibrated areas of the Silurian Longmaxi Formation, Changning and Jiaoshiba, Sichuan Basin[J]. Natural Gas Geoscience, 2016,27(3):423-432.
[34] 马新华. 四川盆地南部页岩气富集规律与规模有效开发探索[J]. 天然气工业, 2018,38(10):1-10.
[34] MA X H. Enrichment laws and scale effective development of shale gas in the southern Sichuan Basin[J]. Natural Gas Industry, 2018,38(10):1-10.
[35] 周宝刚, 李贤庆, 张吉振, 等. 川南地区龙马溪组页岩有机质特征及其对页岩含气量的影响[J]. 中国煤炭地质, 2014,26(10):27-32.
[35] ZHOU B G, LI X Q, ZHANG J Z, et al. Organic Matter Characteristics in Longmaxi Formation Shale and Its Impact on Shale Gas Content in Southern Sichuan Area[J]. Coal Geology of China, 2014,26(10):27-32.
[36] 周道容. 四川盆地威远地区下古生界页岩气成藏条件及有利区优选[D]. 成都:成都理工大学, 2013.
[36] ZHOU D R. Shale gas reservoiring conditions and favorable area preferred in Lower Paleozoic in Weiyuan, Sichuan[D]. Chengdu: Chengdu University of Technology, 2013.
[37] CHEN Z Y, SONG Y, JIANG Z X , et al. Identification of organic matter components and organic pore characteristics of marine shale: A case study of Wufeng-Longmaxi shale in southern Sichuan Basin, China[J]. Marine and Petroleum Geology, 2019,109:56-69.
[38] MA Y, ARDAKANI OH, ZHONG N N , et al. Possible pore structure deformation effects on the shale gas enrichment: An example from the Lower Cambrian shales of the Eastern Upper Yangtze Platform, South China[J]. International Journal of Coal Geology, 2020,217:103349.
[39] ZHAO J H, JIN Z J, JIN Z K , et al. Mineral types and organic matters of the Ordovician-Silurian Wufeng and Longmaxi Shale in the Sichuan Basin, China: Implications for pore systems, diagenetic pathways, and reservoir quality in fine-grained sedimentary rocks[J]. Marine and Petroleum Geology, 2017,86:655-674.
[40] 赵迪斐, 郭英海, 杨玉娟, 等. 渝东南下志留统龙马溪组页岩储集层成岩作用及其对孔隙发育的影响[J]. 古地理学报, 2016,18(5):843-856.
[40] ZHAO D F, GUO Y H, YANG Y J, et al. Shale reservoir diagenesis and its impacts on pores of the Lower Silurian Longmaxi Formation in southeastern Chongqing[J]. Journal of Palaeogeography, 2016,18(5):843-856.
[41] NIE H K, SUN C X, LIU G X , et al. Dissolution pore types of the Wufeng Formation and the Longmaxi Formation in the Sichuan Basin, south China: Implications for shale gas enrichment[J]. Marine and Petroleum Geology, 2019,101:243-251.
[42] 韩超, 吴明昊, 吝文, 等. 川南地区五峰组-龙马溪组黑色页岩储层特征[J]. 中国石油大学学报(自然科学版), 2017,41(3):14-22.
[42] HAN C, WU M H, LIN W, et al. Characteristics of black shale reservoir of Wufeng-Longmaxi Formation in the Southern Sichuan Basin[J]. Journal of China University of Petroleum(Edition of Natural Science), 2017,41(3):14-22.
[43] BERNARD S, WIRTH R, SCHREIBER A , et al. Formation of nanoporous pyrobitumen residues during maturation of the Barnett Shale(Fort Worth Basin)[J]. International Journal of Coal Geology, 2012,103:3-11.
[44] MILLIKEN K L, RUDNICKI M, AWWILLER D N , et al. Organic matter-hosted pore system, marcellus formation(devonian), Pennsylvania[J]. AAPG Bull, 2013,97(2):177-200.
[45] LOUCKS R G, REED R M, RUPPEL S , et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix related pores[J]. AAPG Bulletin, 96(6):1071-1098.
[46] ZHAO J H, JIN Z J, HU Q H , et al. Mineral composition and seal condition implicated in pore structure development of organic-rich Longmaxi shales, Sichuan Basin, China[J]. Marine and Petroleum Geology, 2018,98:507-522.
[47] 董大忠, 高世葵, 黄金亮, 等. 论四川盆地页岩气资源勘探开发前景[J]. 天然气工业, 2014,4(12):1-15.
[47] DONG D Z, GAO S K, HUANG J L, et al. A discussion on the shale gas exploration & development prospect in the Sichuan Basin[J]. Natural Gas Industry, 2014,34(12):1-15.
[48] 马新华, 谢军, 雍锐. 四川盆地南部龙马溪组页岩气地质特征及高产控制因素[J]. 石油勘探与开发, 2020,47(5):1-15.
[48] MA Xinhua, XIE Jun, YONG Rui. Geological characteristics and high production control factors of shale gas in Silurian Longmaxi Formation, southern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2020,47(5):1-15.
文章导航

/