综合研究

基于突变级数法的压裂层段组合方法研究

  • 张善义 ,
  • 兰金玉
展开
  • 中国石油大庆油田有限责任公司第五采油厂,黑龙江 大庆 163513
张善义(1986 —),男,硕士,工程师,从事油藏工程方面的研究。地址:黑龙江省大庆市红岗区第五采油厂地质大队,邮政编码:163513。E-mail: zsy0537@sina.com

收稿日期: 2019-05-01

  网络出版日期: 2020-09-24

基金资助

国家科技重大专项“大庆长垣特高含水油田提高采收率示范工程”(2016ZX05054)

Research on fracturing layer combination method based on mutation series method

  • Shanyi ZHANG ,
  • Jinyu LAN
Expand
  • N0.5 Oil Production Plant, PetroChina Daqing Oilfield Company, Daqing, Heilongjiang 163513, China

Received date: 2019-05-01

  Online published: 2020-09-24

摘要

针对特高含水后期压裂层差异性越来越小、考虑地质因素逐渐增多、压裂层段组合越来越难等问题,优选出能够反应油层特征的储层、物性、含油性、产能等参数,利用突变级数法,将每个小层的多个参数归一成一个综合评价值,通过该评价值进行压裂层段定量组合,这样就解决了高含水后期因压裂层段组合不合理造成的层段内部分砂体无法压开的问题,实现了压裂层段的高效智能组合。通过使用该方法,完成了研究区25口压裂井的层段组合,同期相比单井日均多增油0.5 t,取得了较好的效果。该方法对油层压裂层段定量组合具有良好的借鉴。

本文引用格式

张善义 , 兰金玉 . 基于突变级数法的压裂层段组合方法研究[J]. 油气藏评价与开发, 2020 , 10(5) : 108 -113 . DOI: 10.13809/j.cnki.cn32-1825/te.2020.05.016

Abstract

In the late stage of extra-high water cut, the difference of fracturing layers becomes smaller and smaller, the geological factors taken into account increase gradually, and the combination of fracturing layers becomes more and more difficult, so that, the parameters, such as reservoir, physical property, oil content and production capacity, which can reflect reservoir characteristics are optimized. By using the mutation progression method, the multiple parameters of each small layer are reduced to one comprehensive evaluation value. Through this evaluation value, the quantitative combination of fractured strata is carried out, which solves the problem that some sand bodies in the fractured strata can not be fractured due to the unreasonable combination of fractured strata in the late stage of high water cut, and realizes the efficient and intelligent combination of fractured strata. By this method, the stratified combination of 25 fractured wells in the study area is completed, and the average daily oil increase is 0.5 t more than that of a single well in the same period, achieving a better effect. It is a good reference for the quantitative combination of fractured layers.

参考文献

[1] 薛颖. 基于油层分类标准的特低渗油藏压裂井层定量优选研究及应用[J]. 新疆石油天然气, 2019,15(3):58-63.
[1] XUE Y. A quantitative optimization research based on the classification criteria[J]. Xinjiang Oil &Gas, 2019,15(3):58-63.
[2] 高辉, 张晓, 何梦卿, 等. 基于测井数据体的页岩油储层可压裂性评价研究[J]. 地球物理学进展, 2018,33(2):603-612.
[2] GAO H, ZHANG X, HE M Q, et al. Study on evaluation of shale oil reservoir fracability based on well logging data volume[J]. Progress in Geophysics, 2018,33(2):603-612.
[3] 张文, 王禄春, 郭玮琪, 等. 特高含水期水驱油井压裂潜力研究[J]. 岩性油气藏, 2012,24(4):115-120.
[3] ZHANG W, WANG L C, GUO W Q, et al. Study on fracturing potential of water driving oil wells in extra-high water cut stage[J]. Lithologic Reservoirs, 2012,24(4):115-120.
[4] HU Y, HAN L G, ZHANG P , et al. Multi-step full waveform inversion based on waveform mode decomposition[C]// paper SEG-2016-13712251 presented at the 2016 SEG International Exposition and Annual Meeting, 16-21 October 2016, Dallas, Texas, USA.
[5] KLINGENSMITH B C, HOSSAINI M, FLEENOR S. Considering far-field fracture connectivity in stimulation treatment designs in the Permian Basin[C]// paper URTEC-2153821-MS presented at the Unconventional Resources Technology Conference, 20-22 July 2015, San Antonio, Texas, USA.
[6] SAHAI R, MISKIMINS J L, OLSON K E, et al. Laboratory results of proppant transport in complex fracture systems[C]// paper SPE-168579-MS presented at the SPE Hydraulic Fracturing Technology Conference, 4-6 February 2014, The Woodlands, Texas, USA.
[7] 翟文宝, 李军, 周英操, 等. 突变理论在页岩储层可压性评价中的应用[J]. 断块油气田, 2018,25(1):76-79.
[7] ZHAI W B, LI J, ZHOU Y C, et al. Application of catastrophe theory to fracability evaluation of shale reservoir[J]. Fault-Block Oil & Gas Field, 2018,25(1):76-79.
[8] 牛世忠. 红岗油田压裂选井选层方法研究及应用[J]. 石油天然气学报(江汉石油学院学报), 2005,27(6):916-918.
[8] NIU S Z. Method and its application of well selection for fracturing in Honggang Oilfield[J]. Journal of Oil and Gas Technology, 2005,27(6):916-918.
[9] 梁煌, 韩立国, 许卓, 等. 互相关与最小二乘加权目标函数全波形反演[J]. 世界地质, 2017,36(2):588-594.
[9] LIANG H, HAN L G, XU Z, et al. Full waveform inversion based on weighted cross-correlation and least squares objective function[J]. Global Geology, 2017,36(2):588-594.
[10] 王勃, 孙粉锦, 李贵中, 等. 基于模糊物元的煤层气高产富集区预测——以沁水盆地为例[J]. 天然气工业, 2010,30(11):22-25.
[10] WANG B, SUN F J, LI G Z, et al. Prediction of prolific CBM zones with the fuzzy matter clement method: A case study of the Qinshui Basin[J]. Natural Gas lndustry, 2010,30(11):22-25.
[11] 张善义, 兰金玉. 基于灰色关联分析的沉积微相定量描述技术及应用[J]. 断块油气田, 2019,26(1):25-28.
[11] ZHANG S Y, LAN J Y. Quantitative description technique of sedimentary micro-facies by grey relational analysis and its application[J]. Fault-Block Oil & Gas Field, 2019,26(1):25-28.
[12] 张善义, 兰金玉, 李冰. 基于粒子群算法的综合调整方案优化方法[J]. 特种油气藏, 2019,26(1):126-130.
[12] ZHANG S Y, LAN J Y, LI B. Comprehensive optimization of adjustment program based on particle swarm optimization[J]. Special Oil and Gas Reservoirs, 2019,26(1):126-130.
[13] 雷能忠. 基于RBF神经网络的煤储层随机建模[J]. 煤炭学报, 2012,37(7):1144-1149.
[13] LEI N Z. Stochastic simulation of coalbed methane reservoir by radial basis function neural network[J]. Journal of China Coal Society, 2012,37(7):1144-1149.
[14] 郑鸿明, 彭立, 李生杰. 模拟退火静校正[J]. 新疆石油地质, 2001,22(1):32-34.
[14] ZHENG H M, PENG L, LI S J. Conducting static correction by annealing analog[J]. Xinjiang Petroleum Geology, 2001,22(1):32-34.
[15] 梁昌勇, 柏桦, 蔡美菊, 等. 量子遗传算法研究进展[J]. 计算机应用研究, 2012,29(7):2401-2405.
[15] LIANG C Y, BAI H, CAI M J, et al. Advances in quantum genetic algorithm[J]. Application Research of Computers, 2012,29(7):2401-2405.
[16] 张强, 李盼池, 刘丽杰. 基于量子混合蛙跳算法的油田开发规划多目标优化[J]. 信息与控制, 2014,43(1):116-122.
[16] ZHANG Q, LI P C, LIU L J. Multi-objective optimization of oilfield development plan based on uantum-shuffled frog-leaping algorithm[J]. Information and Control, 2014,43(1):116-122.
[17] 白云飞, 叶振华. 基于突变优选理论的采矿方法选择[J]. 金属矿山, 2011,40(10):61-67.
[17] BAI Y F, YE Z H. Selection of mining method based on the mutation optimization theory[J]. Metal Mine, 2011,40(10):61-67.
[18] 师俊峰, 刘玉章, 吴晓东, 等. 基于突变理论的油气井出砂预测新方法[J]. 西南石油大学学报(自然科学版), 2010,32(2):128-132.
[18] SHI J F, LIU Y Z, WU X D, et al. A new probe of sand production prediction based on catastrophic theory[J]. Joumal of Souihwest Petrpleum University(Science &Technology Edition), 2010,32(2):128-132.
[19] 凌复华. 突变理论应用及其应用[M]. 上海: 上海交通大学出版社, 1987.
[19] LING F H. The theory and application of catastrophe theory[M]. Shanghai: Shanghai Jiao Tong University Press, 1987.
[20] 戴勇, 李正文, 吴大奎. 突变论在地震资料储层预测中的应用[J]. 天然气工业, 2006,26(6):47-49.
[20] DAI Y, LI Z W, WU D K. Application of catastrophic theory to seismic reservoir prediction[J]. Natural Gas Industry, 2006,26(6):47-49.
[21] 何沙, 吉安民, 杨品, 等. 安全流变—突变模型在井喷事故中的应用分析巨[J]. 天然气工业, 2011,31(4):109-112.
[21] HE S, JI A M, YANG P, et al. Application of safety rheology-mutation models in well blowout accidents[J]. Natural Gas Industry, 2011,31(4):109-112.
[22] 李绍飞, 孙书洪, 王向余. 突变理论在海河流域地下水环境风险评价中的应用[J]. 水利学报, 2007,38(11):1312-1317.
[22] LI S F, SUN S H, WANG X Y. Application of catastrophe theory to risk assessment of groundwater environment for river basin[J]. Journal of Hydraulic Engineering, 2007,38(11):1312-1317.
文章导航

/