页岩气勘探

彭水地区常压页岩气储层特征及有利区评价

  • 彭勇民 ,
  • 龙胜祥 ,
  • 何希鹏 ,
  • 唐建信 ,
  • 聂海宽 ,
  • 高玉巧 ,
  • 薛冈 ,
  • 凡渝东 ,
  • 刘雨林
展开
  • 1.中国石化石油勘探开发研究院有限公司,北京100083
    2.中国石化页岩油气勘探开发重点实验室,北京100083
    3.中国石化华东油气分公司,江苏 南京 210019
    4.中国地质调查局油气资源调查中心,北京100083
彭勇民(1965—) 男,博士,教授级高工,主要从事非常规、常规油气勘探与油气藏描述研究。地址:北京市海淀区学院路31号,邮政编码:100083。E-mail: Pengym. syky@sinopec.com

收稿日期: 2020-05-11

  网络出版日期: 2020-09-24

基金资助

国家重点研发计划“煤层气、页岩气及现代煤化工关键技术标准研究”(2018YFF0213802);国家科技重大专项“彭水地区常压页岩气勘探开发示范工程”(2016ZX05061)

Characteristics of normal-pressure shale gas reservoirs and evaluation of its favorable areas in Pengshui

  • Yongmin PENG ,
  • Shenxiang LONG ,
  • Xipeng HE ,
  • Jianxin TANG ,
  • Haikuan NIE ,
  • Yuqiao GAO ,
  • Gang XUE ,
  • Yudong FAN ,
  • Yulin LIU
Expand
  • 1. Sinopec Petroleum exploration and Development Research Institute Co., Ltd, Beijing 100083, China
    2. Sinopec Key Laboratory of Shale Oil/Gas Exploration and Production Technology, Beijing 100083, China
    3. East China oil and gas branch of Sinopec, Nanjing 210019, Jiangsu, China
    4. Oil & Gas Survey of China Geological Survey, Beijing 100083, China

Received date: 2020-05-11

  Online published: 2020-09-24

摘要

基于地质、测录井和实验分析资料,运用建立的页岩气储层定量表征方法,开展了彭水地区上奥陶统五峰组—下志留统龙一段常压页岩气储层研究,认为①—⑤小层内的优质页岩储集空间以有机质孔隙、页理缝或层理缝为主。FIB(聚焦离子束)测得的算术平均孔径以中孔为主(20~50 nm),而体积加权平均孔径为大孔(100 nm),这表明大孔是总体积和孔隙度的主要贡献者。岩心尺度裂缝导致气测突然降低或增高和小层级别的页岩气发生迁移。Maps新方法表明:隆页1井①小层的层理缝是张开且连续的,张开宽度为4.69 μm;顺层剪切缝的张开宽度为1.1~2.67 μm,层理缝与顺层剪切缝的面孔率之和为1.39 %,约占样品总孔隙度的1/3,说明层理缝与天然构造缝是主要的页岩气储层空间。与超压页岩气藏相比,常压区页岩储层的孔隙度略低,高角度缝及层理缝更发育。根据常压页岩气的储层评价参数与标准,对武隆向斜①—⑤小层页岩段进行评价,Ⅰ类储层有利区为620.22 km2

本文引用格式

彭勇民 , 龙胜祥 , 何希鹏 , 唐建信 , 聂海宽 , 高玉巧 , 薛冈 , 凡渝东 , 刘雨林 . 彭水地区常压页岩气储层特征及有利区评价[J]. 油气藏评价与开发, 2020 , 10(5) : 12 -19 . DOI: 10.13809/j.cnki.cn32-1825/te.2020.05.002

Abstract

Based on geological, logging and experimental analysis data, normal-pressure shale gas reservoir of Upper Ordovician Wufeng Formation to Lower Silurian Longmaxi Member in Pengshui area has been researched by the established quantitative characterization method, and it is found that the reserving space of high-quality shale in ①—⑤ layers is mainly composed of organic pores and bedding joints. The arithmetic average aperture measured by FIB nanotechnology with higher resolution ranges is from 20 to 50 nm, being mainly mesopores. However, the volume weighted average aperture is 100 nm, being macropore. In terms of the measured pore volume, macropore is the main contributor to total volume and porosity. Core-scale fractures lead to the abrupt decrease or increase of gas logging and the migration of shale gas at layer-level. The new method, Maps, show that the bedding joints in layer① of well-Longye-1 are open and continuous with an opening width of 4.69 μm, and the opening width of bedding shear joint is 1.1~2.67 μm. The sum of plane porosity for bedding and bedding shear joints is 1.39 %, which accounts for about 1/3 of the total porosity of the sample. It confirms the important contribution of bedding fracture and natural tectonic fracture for shale gas reservoir spaces. Comparing with the overpressure shale gas reservoirs, the porosity of shale reservoir in normal-pressure area is slightly low, and the high-angle seam and bedding joints are more developed. A new parameters and criteria method for evaluating normal-pressure shale gas reservoirs has been established. By this method, favorable reservoir area of type I reservoir is of 620.22 km2 in layer ① to ⑤ of Wulong syncline.

参考文献

[1] 方志雄, 何希鹏. 渝东南武隆向斜常压页岩气形成与演化[J]. 石油与天然气地质, 2016,37(6):819-827.
[1] FANG Z X, HE X P. Formation and evolution of normal pressure shale gas reservoir in Wulong Syncline, Southeast Chongqing, China[J]. Oil & Gas Geology, 2016,37(6):819-827.
[2] 郑和荣, 彭勇民, 唐建信, 等. 中、上扬子地区常压页岩气勘探前景——以湘中坳陷下寒武统为例[J]. 石油与天然气地质, 2019,40(6):1155-1167.
[2] ZHENG H R, PENG Y M, TANG J X, et al. Exploration prospect of normal pressure shale gas in Middle and Upper Yangtze regions: A case study of the Lower Cambrian shale in Xiangzhong Depression[J]. Oil & Gas Geology, 2019,40(6):1155-1167.
[3] 郭旭升, 李宇平, 刘若冰, 等. 四川盆地焦石坝地区龙马溪组页岩微观孔隙结构特征及其控制因素[J]. 天然气工业, 2014,34(6):9-16.
[3] GUO X S, LI Y P, LIU R B, et al. Characteristics and controlling factors of micro-pore structures of Longmaxi Shale Play in the Jiaoshiba area, Sichuan Basin[J]. Natural Gas Industry, 2014,34(6):9-16.
[4] 张烈辉, 郭晶晶, 唐洪明, 等. 四川盆地南部下志留统龙马溪组页岩孔隙结构特征[J]. 天然气工业, 2015,35(3):22-29.
[4] ZHANG L H, GUO J J, TANG H M, et al. Pore structure characteristics of Longmaxi shale in the southern Sichuan Basin[J]. Natural Gas Industry, 2015,35(3):22-29.
[5] 薛冰, 张金川, 唐玄, 等. 黔西北龙马溪组页岩微观孔隙结构及储气特征[J]. 石油学报, 2015,36(2):138-149.
[5] XUE B, ZHANG J C, TANG X, et al. Characteristics of microscopic pore and gas accumulation on shale in Longmaxi Formation, northwest Guizhou[J]. Acta Petrolei Sinica, 2015,36(2):138-149.
[6] 肖佃师, 赵仁文, 杨潇, 等. 海相页岩气储层孔隙表征、分类及贡献[J]. 石油与天然气地质, 2019,40(6):1215-1225.
[6] XIAO D S, ZHAO R W, YANG X, et al. Characterization, classification and contribution of marine shale gas reservoirs[J]. Oil & Gas Geology, 2019,40(6):1215-1225.
[7] 苑丹丹, 卢双舫, 陈方文, 等. 渝东南地区彭页1井泥页岩微观孔隙结构特征[J]. 特种油气藏, 2016,23(1):49-53.
[7] YUAN D D, LU S F, CHEN F W, et al. Shale microscopic pore structure characterization in Well Pengye 1 of Southeast Chongqing[J]. Special Oil & Gas Reservoirs, 2016,23(1):49-53.
[8] 张士万, 孟志勇, 郭战峰, 等. 涪陵地区龙马溪组页岩储层特征及其发育主控因素[J]. 天然气工业, 2014,34(12):16-24.
[8] ZHANG S W, MENG Z Y, GUO Z F, et al. Characteristics and major controlling factors of shale reservoirs in the Longmaxi Fm, Fuling area, Sichuan Basin[J]. Natural Gas Industry, 2014,34(12):16-24.
[9] 杨文新, 李继庆, 赵江艳, 等. 四川盆地涪陵地区龙马溪组页岩微观孔隙结构定性定量研究[J]. 石油实验地质, 2018,40(1):97-102.
[9] YANG W X, LI J Q, ZHAO J Y, et al. Qualitative and quantitative study of micro-pore structures of Longmaxi Formation shale in Fuling area, Sichuan Basin[J]. Petroleum Geology & Experiment, 2018,40(1):97-102.
[10] 伍岳, 樊太亮, 蒋恕, 等. 海相页岩储层微观孔隙体系表征技术及分类方案[J]. 地质科技情报, 2014,33(4):91-97.
[10] WU Y, FAN T L, JIANG S, et al. Characterizing techniques and classification methods for microscope pore system in marine shale reservoir[J]. Geological Science and Technology Information, 2014,33(4):91-97.
[11] 郭彤楼, 张汉荣. 四川盆地焦石坝页岩气田形成与富集高产模式[J]. 石油勘探与开发, 2014,41(1):28-36.
[11] GUO T L, ZHANG H R. Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan Basin[J]. Petroleum Exploration & Development, 2014,41(1):28-36.
[12] 黄仁表, 魏祥峰, 王强. 四川盆地东南缘丁山地区页岩气成藏富集的关键控制因素[J]. 海相油气地质, 2017,22(2):25-30.
[12] HUANG R B, WEI X F, WANG Q. Key factors of shale gas accumulation in Dingshan area of southeastern Sichuan Basin[J]. Marine Origin Petroleum Geology, 2017,22(2):25-30.
[13] 王适择, 李忠权, 郭明, 等. 川南长宁地区龙马溪组页岩裂缝发育特征[J]. 科学技术与工程, 2013,13(36):10887-10898.
[13] WANG S Z, LI Z Q, GUO M, et al. Developmental characteristies of Longmaxi Formation shale fissure in Changning of South of Sichuan Area[J]. Science Technology and Engineering, 2013,13(36):10887-10898.
[14] 徐政语, 梁兴, 王希友, 等. 四川盆地罗场向斜黄金坝建产区五峰组-龙马溪组页岩气藏特征[J]. 石油与天然气地质, 2017,38(1):132-143.
[14] XU Z Y, LIANG X, WANG X Y, et al. Shale gas reservoir characteristics of the Wufeng-Longmaxi Formations in Huangjinba construction block of the Luochang Syncline, the Sichuan Basin[J]. Oil & Gas Geology, 2017,38(1):132-143.
[15] GALE J FW, REED R M, HOLDER J . Natural fractures in the Barnett Shale and their importance for hydraulic fracture treatments[J]. AAPC Bulletin, 2007,91(4):603-622.
[16] XIAO Y T, VAN DEN BOSCH R H, Liu F, et al. Performance evaluation in data rich Fayetteville Shale Gas Plays Integrating physics-based reservoir simulations with data driven approaches for uncertainty reduction[C]// paper IPTC-14940-MS presented at the International Petroleum Technology Conference, 15-17 November 2011, Bangkok, Thailand.
[17] ZUMBERGE J, FERWORN K, BROWN S . Isotopic reversal(‘rollover’) in shale gases produced from the Mississippian Barnett and Fayetteville formations[J]. Marine and Petroleum Geology, 2012,31(1):43-52.
[18] BAI B J, ELGMATI M, ZHANG H , et al. Rock characterization of Fayetteville shale gas plays[J]. Fuel, 2013,105:645-652.
[19] 能源行业页岩气标准化技术委员会. 页岩气藏描述技术规范: NB/T 14001—2015[S].北京:中国电力出版社, 2015.
[19] Shale Gas Standardization Technical Committee. Specification of shale gas reservoir description: NB/T 14001—2015[S]. Beijing: China Electric Power Press, 2015.
[20] 何希鹏, 何贵松, 高玉巧, 等. 渝东南盆缘转换带常压页岩气地质特征及富集高产规律[J]. 天然气工业, 2018,38(12):1-14.
[20] HE X P, HE G S, GAO Y Q, et al. Geological characteristics and enrichment laws of normal-pressure shale gas in the basin-margin transition zone of SE Chongqing[J]. Natural Gas Industry, 2018,38(12):1-14.
[21] 王运海. 四川盆地平桥地区五峰—龙马溪组页岩微观孔隙特征研究[J]. 石油实验地质, 2018,40(3):337-344.
[21] WANG Y H. Micro-pore characteristics of shale from Wufeng-Longmaxi formations in Pingqiao area, Sichuan Basin[J]. Petroleum Geology & Experiment, 2018,40(3):337-344.
[22] 朱汉卿, 贾爱林, 位云生, 等. 昭通示范区龙马溪组页岩微观孔隙结构特征及吸附能力[J]. 油气地质与采收率, 2018,25(4):1-6.
[22] ZHU H Q, JIA A L, WEI Y S, et al. Characteristics of microscopic pore structure and methane adsorption capacity of shale in the Longmaxi Formation in the Zhaotong area[J]. Petroleum Geology and Recovery Efficiency, 2018,25(4):1-6.
[23] 何陈诚, 何生, 郭旭升, 等. 焦石坝区块五峰组与龙马溪组一段页岩有机孔隙结构差异性[J]. 石油与天然气地质, 2018,39(3):472-484.
[23] HE C C, HE S, GUO X S, et al. Structural differences in organic pores between shales of the Wufeng Formation and of the Longmaxi Formation’s first Member, Jiaoshiba Block, Sichuan Basin[J]. Oil & Gas Geology, 2018,39(3):472-484
[24] 高玉巧, 蔡潇, 张培先, 等. 渝东南盆缘转换带五峰组—龙马溪组页岩气储层孔隙特征与演化[J]. 天然气工业, 2018,38(12):15-25.
[24] GAO Y Q, CAI X, ZHANG P X, et al. Pore characteristics and evolution of Wufeng-Longmaxi Fms shale gas reservoirs in the basin-margin transition zone of SE Chongqing[J]. Natural Gas Industry, 2018,38(12):15-25.
文章导航

/