油气藏评价与开发 >
2020 , Vol. 10 >Issue 5: 20 - 27
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2020.05.003
深层页岩气源储耦合机理研究——以川南地区X井为例
收稿日期: 2019-10-24
网络出版日期: 2020-09-24
基金资助
中国石化科技部项目“深层页岩气综合评价及开发技术政策”(P18058-1);国家自然科学基金项目“复杂构造—成岩背景下海相页岩有机孔隙演化与晚期差异保存研究”(41972164)
Gas storage characteristics and coupling characteristics of deep shale gas: a case study of well-X in southern Sichuan basin, China
Received date: 2019-10-24
Online published: 2020-09-24
以中国石化川南地区五峰组—龙马溪组典型取心井X井为例,基于岩心观察、地化分析、X衍射、物性测试、氩离子抛光—扫描电镜、生烃模拟等多种测试手段,运用“源储耦合”研究思路,分析了取心段作为“源”的属性和作为“储”的属性特征,并探讨“源储耦合”特征。研究表明,川南地区五峰组—龙马溪组底部页岩干酪根类型为腐泥型,富含有机质,处于高—过成熟演化阶段,以生成干气为主;基质孔隙度平均为6.5 %,其中以无机孔为主,无机孔隙类型主要以粒间孔、黏土矿物孔、长石蚀变孔、黄铁矿晶间孔为主;地层温压条件下平均吸附气含量为0.9 m3/t;渗透率平均为0.38×10-3 μm2,属于超低渗透储层。整体而言,X井在五峰—龙马溪组底部“源”优质,生气量大,现今滞留气量仅为生气量的54.8 %;在储集空间类型方面,以无机孔为主,同时,有机孔大量发育,在赋存方式上以游离气为主;富有机质页岩段发育的纹层增加了储层的渗透性,同时,生物成因的硅质矿物增加了储层的脆性,易于压裂造缝。因此,五峰—龙马溪组底部富有机质页岩段整体为最佳的“源储耦合”层段,是页岩气勘探开发的主要层段和水平井轨迹的关键目标层。
杨振恒 , 胡宗全 , 熊亮 , 丁江辉 , 申宝剑 , 史洪亮 , 卢龙飞 , 魏力民 , 李志明 . 深层页岩气源储耦合机理研究——以川南地区X井为例[J]. 油气藏评价与开发, 2020 , 10(5) : 20 -27 . DOI: 10.13809/j.cnki.cn32-1825/te.2020.05.003
Taking well-X, a typical core well of the Wufeng-Longmaxi Formation in Southern Sichuan Basin, as an example, based on core observation, geochemical analysis, X-ray diffraction, physical properties testing, argon ion polishing SEM, hydrocarbon generation simulation and other testing methods, and by using the research idea of “source-storage coupling”, the properties of the core segment as the “source” and the “storage” respectively are analyzed, and the mechanism of “source-storage coupling” is further discussed. The research results show that the bottom shale in Wufeng-Longmaxi Formation is characterized by sapmpelic kerogen, abundant organic matter, and high degree of thermal evolution, in which dry gas mainly generate. The average porosity of matrix is 6.5 %, mainly are inorganic pores. The inorganic pore types are mainly intergranular pore, clay mineral pore, feldspar alteration pore and pyrite intergranular pore. The average amount of adsorbed gas under formation temperature and pressure conditions is 0.9 m3/t. The average permeability is 0.38×10-3 μm2, which means it belongs to an ultra-low permeability reservoir. Generally speaking, the well-X has sufficient “source” at the bottom of the Wufeng-Longmaxi Formation with large amount of generated gas. The current stagnant gas volume is only about 54.8 % of the amount of generated gas, and the matrix pores are mainly inorganic pores. Meanwhile, organic pores are an important supplement. Free gas is the main body. The development of organic-rich shale section improves the permeability of the reservoir. At the same time, the biogenic siliceous minerals enhance the brittleness of the reservoir and make the reservoir easy to be fractured. Therefore, the organic-rich shale section is the best source-storage coupling interval, and also is the main interval of shale gas exploration and development and the key target layer of a horizontal well.
[1] | CURTIS J B . Fractured shale gas system[J]. AAPG Bulletin, 2002,86(11):1921-1938. |
[2] | JARVIE D M, HILL R J, RUBLE T , et a1. Unconventional shale-gas systems:The Mississippian Barnett Shale of north central Texas as one model for thermogenic shale gas assessment[J]. AAPG Bulletin, 2007,91(4):475-499. |
[3] | 张金川, 金之钧, 袁明生. 页岩气成藏机理和分布[J]. 天然气工业, 2004,24(7):15-18. |
[3] | ZHANG J C, JIN Z J, YUAN M S. Reservoiring mechanism of shale gas and its distribution[J]. Natural Gas Industry, 2004,24(7):15-18. |
[4] | 胡宗全, 杜伟, 彭勇民. 海相页岩源-储耦合特征及其对页岩气的控制作用[A].中国地质学会2015学术年会论文摘要汇编(中册)[C].北京:地质学报, 2015. |
[4] | HU Z Q, DU W, PENG Y M. Source-reservoir coupling characteristics of marine shale and their control on shale gas[A]. Abstracts of the 2015 Annual Conference of Chinese Geological Society(Volume 2)[C]. Beijing: Acta Geologica Sinica, 2015. |
[5] | 胡宗全, 杜伟, 刘保忠, 等. 页岩气源储耦合机理及其应用[M]. 北京: 地质出版社, 2018. |
[5] | HU Z Q, DU W, LIU B Z, et al. Shale gas-reservoir coupling mechanism and its application[M]. Beijing: Geological Publishing House, 2018. |
[6] | 全国石油天然气标准化技术委员会. 天然气藏分类:GB/T 26979—2011[S].北京:中国标准出版社, 2011. |
[6] | SAC TC355. The classification of natural gas pool: GB/T 26979—2011[S]. Beijing: Standards Press of China, 2011. |
[7] | 全国国土资源标准化技术委员会. 页岩气资源/储量计算与评价技术规范:DZ/T 0254—2014[S].北京:中国标准出版社, 2014. |
[7] | SAC TC93. Regulation of shale gas resources/reserves estimation: DZ/T 0254—2014[S]. Beijing Standards Press of China, 2014. |
[8] | 王志刚. 涪陵页岩气勘探开发重大突破与启示[J]. 石油与天然气地质, 2015,36(1):1-6. |
[8] | WANG Z G. Breakthrough of Fuling shale gas exploration and development and its inspiration[J]. Oil & Gas Geology, 2015,36(1):1-6. |
[9] | 郭旭升, 胡东风, 魏志红, 等. 涪陵页岩气田的发现与勘探认识[J]. 中国石油勘探, 2016,21(3):24-37. |
[9] | GUO X S, HU D F, WEI Z H, et al. Discovery and exploration of Fuling shale gas field[J]. China Petroleum Exploration, 2016,21(3):24-37. |
[10] | 王红岩, 郭伟, 梁峰, 等. 四川盆地威远页岩气田五峰组和龙马溪组黑色页岩生物地层特征与意义[J]. 地层学杂志, 2015,39(3):289-293. |
[10] | WANG H Y, GUO W, LIANG F, et al. Biostratigraphy characteristics and scientific meaning of the Wufeng and Longmaxi Formation black shales at well Wei 202 of the Weiyuan Shale Gas Field, Sichuan Basin[J]. Journal of Stratigraphy, 2015,39(3):289-293. |
[11] | 刘乃震, 王国勇. 四川盆地威远区块页岩气甜点厘定与精准导向钻井[J]. 石油勘探与开发, 2016,43(6):978-985. |
[11] | LIU N Z, WANG G Y. Shale gas sweet spot identification and precise geo-steering drilling in Weiyuan Block of Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2016,43(6):978-985. |
[12] | 陈云金, 张明军, 李微, 等. 体积压裂与常规压裂投资与效益的对比分析——以川南地区及长宁—威远页岩气示范区为例[J]. 天然气工业, 2014,34(10):128-132. |
[12] | CHEN Y J, ZHANG M J, LI W, et al. A comparative analysis of investment and benefit between conventional fracturing and fracturing by stimulated reservoir volume(SRV): Cases history of gas/shale gas wells in the Southern Sichuan Basin[J]. Natural Gas Industry, 2014,34(10):128-132. |
[13] | 朱炎铭, 陈尚斌, 方俊华, 等. 四川地区志留系页岩气成藏的地质背景[J]. 煤炭学报, 2010,35(7):1160-1164. |
[13] | ZHU Y M, CHEN S B, FANG J H, et al. The geologic background of the Siluric shale-gas reservoiring in Szechwan, China[J]. Journal of China Coal Society, 2010,35(7):1160-1164. |
[14] | 黄金亮, 邹才能, 李建忠, 等. 川南志留系龙马溪组页岩气形成条件与有利区分析[J]. 煤炭学报, 2012,37(5):782-787. |
[14] | HUANG J L, ZOU C C, LI J Z, et al. Shale gas accumulation conditions and favorable zones of Silurian Longmaxi Formation in south Sichuan Basin,China[J]. Journal of China Coal Society, 2012,37(5):782-787 . |
[15] | 牟传龙, 王秀平, 王启宇, 等. 川南及邻区下志留统龙马溪组下段沉积相与页岩气地质条件的关系[J]. 古地理学报, 2016,18(3):457-472. |
[15] | MU C L, WANG X P, WANG Q Y, et al. Relationship between sedimentary facies and shale gas geological conditions of the Lower Silurian Longmaxi Formation in southern Sichuan Basin and its adjacent areas[J]. Journal of Palaeogeography, 2016,18(3):457-472. |
[16] | 刘若冰, 田景春, 魏志宏, 等. 川东南地区震旦系―志留系下组合有效烃源岩综合研究[J]. 天然气地球科学, 2006,17(6):824-828. |
[16] | LIU R B, TIAN J C, WEI Z H, et al. Comprehensive research of effective hydrocarbon source rock of lower strata from Sinian to Silurian system in southeast area of Sichuan province[J]. Natural Gas Geoscience, 2006,17(6):824-828. |
[17] | 郭为, 熊伟, 高树生, 等. 温度对页岩等温吸附/解吸特征影响[J]. 石油勘探与开发, 2013,40(4):481-485. |
[17] | GUO W, XIONG W, GAO S S, et al. Impact of temperature on the isothermal adsorption/desorption characteristics of shale gas[J]. Petroleum Exploration and Development, 2013,40(4):481-485. |
[18] | 张梦吟, 李争, 王进, 等. 四川盆地涪陵页岩气田五峰—龙马溪组岩矿纵向差异性研究——以JYA井为例[J]. 石油实验地质, 2018,40(1):64-70. |
[18] | ZHANG M Y, LI Z, WANG J, et al. Vertical variation of rocks and minerals in Wufeng-Longmaxi formations in Fuling shale gas field, Sichuan Basin: A case study of well JYA[J]. Petroleum Geology & Experiment, 2018,40(1):64-70. |
[19] | 腾格尔, 高长林, 胡凯, 等. 上扬子东南缘下组合优质烃源岩发育及生烃潜力[J]. 石油实验地质, 2006,28(4):359-365. |
[19] | TENGER, GAO C L, HU K, et al. High-quality source rocks in the lower combination in southeast Upper-Yangtze area and their hydrocarbon generating potential[J]. Petroleum Geology & Experiment, 2006,28(4):359-365. |
[20] | 汤庆艳, 张铭杰, 余明, 等. 页岩气形成机制的生烃热模拟研究[J]. 煤炭学报, 2013,38(5):742-747. |
[20] | TANG Q Y, ZHANG M J, YU M, et al. Pyrolysis constraints on the generation mechanism of shale gas[J]. Journal of China Coal Society, 2013,38(5):742-747. |
[21] | 吉利明, 吴远东, 贺聪, 等. 富有机质泥页岩高压生烃模拟与孔隙演化特征[J]. 石油学报, 2016,37(2):172-181. |
[21] | JI L M, WU Y D, HE C, et al. High-pressure hydrocarbon-generation simulation and pore evolution characteristics of organic-rich mudstone and shale[J]. Acta Petrolei Sinica, 2016,37(2):172-181. |
[22] | 马中良, 郑伦举, 李志明. 烃源岩有限空间温压共控生排烃模拟实验研究[J]. 沉积学报, 2012,30(5):955-963. |
[22] | MA Z L, ZHENG L J, LI Z M. The thermocompression simulation experiment of source rock hydrocarbon generation and expulsion in formation porosity[J]. Acta Sedimentologica Sinica, 2012,30(5):955-963. |
[23] | 杨振恒, 韩志艳, 腾格尔, 等. 四川盆地南部五峰组—龙马溪组页岩地质甜点层特点——以威远—荣昌区块为例[J]. 天然气地球科学, 2019,30(7):1037-1044. |
[23] | YANG Z H, HAN Z Y, TENGEER, et al. Characteristics of Wufeng-Longmaxi Formations shale sweet layer: Case study of Weiyuan-Rongchang block of SINOPEC[J]. Natural Gas Geoscience, 2019,30(7):1037-1044. |
[24] | HAO F, ZOU H Y, LU Y C . Mechanisms of shale gas storage: Implications for shale gas exploration in China[J]. AAPG Bulletin, 2013,97(8):1325-1346. |
[25] | ZHOU Q, XIAO X M, TIAN H , et al. Modeling free gas content of the Lower Paleozoic shales in the Weiyuan area of the Sichuan Basin, China[J]. Marine and Petroleum Geology, 2014,56:87-96. |
[26] | 王飞宇, 贺志勇, 孟晓辉, 等. 页岩气赋存形式和初始原地气量(OGIP)预测技术[J]. 天然气地球科学, 2011,22(3):501-510. |
[26] | WANG F Y, HE Z Y, MENG X H, et al. Occurrence of shale gas and prediction of original gas in-place(OGIP)[J]. Natural Gas Geoscience, 2011,22(3):501-510. |
[27] | 俞凌杰, 范明, 腾格尔, 等. 埋藏条件下页岩气赋存形式研究[J]. 石油实验地质, 2016,38(4):438-444. |
[27] | YU L J, FAN M TENGER, , et al. Shale gas occurrence under burial conditions[J]. Petroleum Geology & Experiment, 2016,38(4):438-444. |
[28] | 卢龙飞, 秦建中, 申宝剑, 等. 川东南涪陵地区五峰-龙马溪组硅质页岩的生物成因及其油气地质意义[J]. 石油实验地质, 2016,38(4):460-465. |
[28] | LU L F, QIN J Z, SHEN B J, et al. Biogenic origin and hydrocarbon significance of siliceous shale from the Wufeng-Longmaxi formations in Fuling area, southeastern Sichuan Basin[J]. Petroleum Geology & Experiment, 2016,38(4):460-465. |
[29] | 王鹏万, 邹辰, 李娴静, 等. 昭通示范区页岩气富集高产的地质主控因素[J]. 石油学报, 2018,39(7):744-753. |
[29] | WANG P W, ZOU C, LI X J, et al. Main geological controlling factors of shale gas enrichment and high yield in Zhaotong demonstration area[J]. Acta Petrolei Sinica, 2018,39(7):744-753. |
[30] | 陆扬博, 马义权, 王雨轩, 等. 上扬子地区五峰组—龙马溪组主要地质事件及岩相沉积响应[J]. 地球科学-中国地质大学学报, 2017,42(7):1169-1184. |
[30] | LU Y B, MA Y Q, WANG Y X, et al. The sedimentary response to the major geological events and Lithofacies characteristics of Wufeng Formation-Longmaxi Formation in the Upper Yangtze Area[J]. Editorial Committee of Earth Science-Journal of China University of Geosciences, 2017,42(7):1169-1184. |
/
〈 | 〉 |