方法理论

层理性页岩声波各向异性校正方法研究

  • 李贤胜 ,
  • 刘向君 ,
  • 梁利喜 ,
  • 李玮 ,
  • 高阳 ,
  • 熊健
展开
  • 1.西南石油大学油气藏地质及开发工程国家重点实验室,四川 成都 610500
    2.中国石油新疆油田分公司勘探开发研究院,新疆 克拉玛依 834000
李贤胜(1996 —),男,在读硕士研究生,主要研究方向为岩石物理及工程测井。地址:四川省成都市新都区西南石油大学,邮政编码:610500。E-mail: CQKZLXS@qq.com

收稿日期: 2020-02-16

  网络出版日期: 2020-09-24

基金资助

国家自然科学基金项目“水岩作用对硬脆性页岩孔隙结构及声波特性影响的研究”(41872167);国家科技重大专项“准噶尔盆地致密油资源潜力、甜点预测与关键技术应用”(2016ZX05046-006);中国石油重大科技专项“准噶尔盆地二叠系页岩油有效动用技术研究与应用”(2017E-0402)

Correction methods for acoustic anisotropy of bedding shale

  • Xiansheng LI ,
  • Xiangjun LIU ,
  • Lixi LIANG ,
  • Wei LI ,
  • Yang GAO ,
  • Jian XIONG
Expand
  • 1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China
    2. Research Institute of Exploration and Development, Xinjiang Oilfield Company, PetroChina, Karamay, Xinjiang 834000, China

Received date: 2020-02-16

  Online published: 2020-09-24

摘要

层理性页岩的物理、力学性质多表现出较强的各向异性,导致同一地层在直井、水平井中测井响应差异大,造成区域储层评价等困难。基于数值模拟实验方法分析了层理角度、层理密度对页岩纵波各向异性的影响,构建了龙马溪组页岩纵波各向异性校正模型,结合室内纵波实验分析了校正模型的合理性。结果表明,龙马溪组页岩纵波各向异性特征明显,纵波各向异性系数分布在1.088 ~ 1.109;纵波各向异性系数与层理角度正弦值呈二次多项式关系;随着层理密度增加,声波各向异性系数近似线性增加。实例应用表明,利用所构建声波各向异性校正模型能将水平井声波响应合理地校正为直井响应。

本文引用格式

李贤胜 , 刘向君 , 梁利喜 , 李玮 , 高阳 , 熊健 . 层理性页岩声波各向异性校正方法研究[J]. 油气藏评价与开发, 2020 , 10(5) : 49 -54 . DOI: 10.13809/j.cnki.cn32-1825/te.2020.05.007

Abstract

The physical and mechanical properties of bedding shales show strong anisotropy, which leads to the significant difference in the logging response of the same formation between the vertical wells and the horizontal wells, and bringing the difficulties in regional reservoir evaluation. Based on the numerical simulations, the influence of orientation and density of bedding on the anisotropy of longitudinal wave has been analyzed, and a correction model for longitudinal wave of shale in Longmaxi formation has been built. Then, combined with the indoor compression wave experiment, the rationality of this new model has been analyzed. The results show that, the longitudinal wave anisotropy of shales in Longmaxi formation is obvious, and the coefficient of longitudinal wave is around 1.088 ~ 1.109. The coefficient of longitudinal wave anisotropy has a quadratic polynomial relation with the sine of the bedding angle, and the anisotropic coefficient increases linearly with the increase of bedding density. Application examples show that this new model can reasonably correct the acoustic response of horizontal wells to that of vertical wells.

参考文献

[1] 邹才能, 杨智, 何东博, 等. 常规-非常规天然气理论、技术及前景[J]. 石油勘探与开发, 2018,45(4):575-587.
[1] ZOU C N, YANG Z, HE D B, et al. Theory, technology and prospects of conventional and unconventional natural gas[J]. Petroleum Exploration and Development, 2018,45(4):575-587.
[2] 戴金星, 秦胜飞, 胡国艺, 等. 新中国天然气勘探开发70年来的重大进展[J]. 石油勘探与开发, 2019,45(6):1-10.
[2] DAI J X, QING S F, HU G Y, et al. Major progress in the natural gas exploration and development in the past seven decades in China[J]. Petroleum Exploration and Development, 2019,45(6):1-10.
[3] 侯振坤, 杨春和, 郭印同, 等. 单轴压缩下龙马溪组页岩各向异性特征研究[J]. 岩土力学, 2015,36(9):2541-2550.
[3] HOU Z K, YANG C H, GUO Y T, et al. Experimental study on anisotropic properties of Longmaxi formation shale under uniaxial compression[J]. Rock and Soil Mechanics, 2015,36(9):2541-2550.
[4] LI W, SCHMITT D R, ZOU C C , et al. A program to calculate pulse transmission responses through transversely isotropic media[J]. Computers and Geosciences, 2018,114:59-72.
[5] MOHAMMAD K Z, NAZMUL H M, JAHREN J . Velocity anisotropy of Upper Jurassic organic-rich shales, Norwegian Continental Shelf[J]. Geophysics, 2017,82(2):61-75.
[6] GONG F, DI B R, WEI J X , et al. Experimental investigation of the effects of clay content and compaction stress on the elastic properties and anisotropy of dry and saturated synthetic shale[J]. Geophysics, 2018,83(5):195-208.
[7] GONG F, DI B R, WEI J X , et al. Ultrasonic velocity and mechanical anisotropy of synthetic shale with different types of clay minerals[J]. Geophysics, 2018,83(2):57-66.
[8] 艾池, 仇德智, 张军, 等. 页岩力学参数测试及脆性各向异性研究[J]. 断块油气田, 2017,24(5):647-651.
[8] AI C, QIU D Z, ZHANG J, et al. Measurements of mechanical parameters and brittleness anisotropy of shale[J]. Fault-Block Oil and Gas Filed, 2017,24(5):647-651.
[9] 汪虎, 郭印同, 王磊, 等. 不同深度页岩储层力学各向异性的试验研究[J]. 岩土力学, 2017,38(9):2496-2506.
[9] WNAG H, GUO Y T, WANG L, et al. An experimental study on mechanical anisotropy of shale reservoirs at different depths[J]. Rock and Soil Mechanics, 2017,38(9):2496-2506.
[10] 高德利. 大型丛式水平井工程与山区页岩气高效开发模式[J]. 天然气工业, 2018,38(8):1-7.
[10] GAO D L. A high-efficiency development mode of shale gas reservoirs in mountainous areas based on large cluster horizontal well engineering[J]. Natural Gas Industry, 2018,38(8):1-7.
[11] 焦方正. 页岩气“体积开发”理论认识、核心技术与实践[J]. 天然气工业, 2019,39(5):1-14.
[11] JIAO F Z. Theoretical insights, core technologies and practices concerning “volume development” of shale gas in China[J]. Natural Gas Industry, 2019,39(5):1-14.
[12] 耿尊博. 大斜度井与水平井孔隙度测井曲线校正技术研究[D]. 北京:中国石油大学, 2011.
[12] GENG Z B. Research on correction technique of porosity logging curves in high angle deviated wells and horizontal wells[D]. Beijing: China University of Petroleum, 2011.
[13] HORNBY B E, HOWIEZ J M, INCE D W . Anisotropy correction for deviated-well sonic logs: Application to seismic well tie[J]. Geophysics, 2003,68(2):464-471.
[14] 乔悦东, 孙建孟, 耿尊博. 斜井泥岩声波速度各向异性校正新方法研究[J]. 石油天然气学报, 2010,32(5):104-108.
[14] QIAO Y D, SUN J M, GENG Z B. New methods of shale acoustic velocity anisotropy correction in deviated wells[J]. Journal of Oil and Gas Technology, 2010,32(5):104-108.
[15] 刘劲歌, 樊洪海, 沙昱良, 等. 斜井测井声波检测孔隙压力校正方法研究[J]. 钻采工艺, 2015,38(1):25-28.
[15] LIU J G, FAN H H, SHA Y L, et al. Research on pore pressure detection using deviated well acoustic waves[J]. Drilling and Production Technology, 2015,38(1):25-28.
[16] 时建超, 屈雪峰, 雷启鸿, 等. 致密油水平井声波时差测井影响因素分析及测井响应特征研究——以鄂尔多斯盆地陇东地区长7储层为例[J]. 西北大学学报(自然科学版), 2017,47(4):585-592.
[16] SHI J C, QU X F, LEI Q H, et al. The influencing factors and response characteristics of acoustic time logging in tight oil horizontal well: A case study of Chang 7 reservoir in logging area of Ordos Basin[J]. Journal of Northwest University(Natural Science Edition), 2017,47(4):585-592.
[17] 董大忠, 施振生, 管全中, 等. 四川盆地五峰组—龙马溪组页岩气勘探进展、挑战与前景[J]. 天然气工业, 2018,38(4):67-76.
[17] DONG D Z, SHI Z S, GUANG Q Z, et al. Progress, challenges and prospects of shale gas exploration in the Wufeng-Longmaxi reservoirs in the Sichuan Basin[J]. Natural Gas Industry, 2018,38(4):67-76.
[18] 汪虎, 何治亮, 张永贵, 等. 四川盆地海相页岩储层微裂缝类型及其对储层物性影响[J]. 石油与天然气地质, 2019,40(1):41-49.
[18] WANG H, HE Z L, ZHANG Y G, et al. Microfracture types of marine shale reservoir of Sichuan Basin and its influence on reservoir property[J]. Oil and Gas Geology, 2019,40(1):41-49.
[19] 段茜, 刘向君. 实验室尺度下气水两相裂缝型介质弹性波速度的数值模拟分析[J]. 石油物探, 2017,56(3):338-348.
[19] DUAN X, LIU X J. Numerical simulation of elastic wave velocity in gas-water two-phase rock from fractured model[J]. Geophysical Prospecting for Petroleum, 2017,56(3):338-348.
[20] 李贤胜, 刘向君, 熊健, 等. 层理对页岩纵波特性的影响[J]. 岩性油气藏, 2019,31(3):152-160.
[20] LI X S, LIU X J, XIONG J, et al. Influence of bedding on compressional wave characteristics of shales[J]. Lithologic Reservoir, 2019,31(3):152-160.
[21] 陈乔, 徐烽淋, 程亮, 等. 基于黏弹性介质波动理论的页岩超声波数值模拟[J]. 天然气工业, 2019,39(6):63-70.
[21] CHEN Q, XUN F L, CHENG L, et al. Shale ultrasonic numerical simulation based on the viscoelastic medium wave theory[J]. Natural Gas Industry, 2019,39(6):63-70.
文章导航

/