方法理论

正交节理与应力比值系数对水力裂缝扩展影响规律研究

  • 张伯虎 ,
  • 周昌满 ,
  • 郑永香 ,
  • 刘建军
展开
  • 1.西南石油大学地球科学与技术学院,四川 成都 610500
    2.中国科学院武汉岩土力学研究所,湖北 武汉 430071
张伯虎(1978—),男,博士,教授,主要从事岩石力学及其工程应用研究。地址:四川省成都市新都区新都大道8号,邮政编码:610500。E-mail: zbh_cd@126.com

收稿日期: 2019-07-09

  网络出版日期: 2020-09-24

基金资助

“十三五”国家科技重大专项“页岩气渗流规律与气藏工程方法”(2017ZX05037001)

Influence of orthogonal joint and stress ratio coefficients on hydraulic fracture propagation

  • Bohu ZHANG ,
  • Changman ZHOU ,
  • Yongxiang ZHENG ,
  • Jianjun LIU
Expand
  • 1. School of Geoscience and Technology, Southwest Petroleum University, Chengdu, Sichuan 610500, China
    2. Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China

Received date: 2019-07-09

  Online published: 2020-09-24

摘要

地层中的节理对水力裂缝扩展延伸形成复杂缝网影响较大。为了研究水力裂缝遇到正交节理时的扩展行为,采用块体离散元方法对三维正交裂缝的水力压裂进行了模拟,分析了应力比值系数k(水平地应力/竖向地应力)对裂缝缝内压力和宽度的影响规律。研究结果表明,水力裂缝扩展到正交节理相交处时会受到阻碍,使相交节理面产生滑移,裂缝尖端发生钝化,阻碍裂缝扩展,而剪应力是产生阻碍作用的主要因素。当水力裂缝沿着宽度方向延伸后,剪应力发生变化,阻碍作用减小,裂缝突破阻碍作用而继续扩展。延伸方向受k值影响较大,当k为0.8和1.0时,竖向裂缝贯穿水平节理沿原方向扩展,但当k为1.2时,竖向裂缝将会转向,沿着水平节理方向扩展。水力裂缝的最大宽度和缝内压力受到k值影响也较大。当k为1.0时,裂缝最大宽度趋于稳定,裂缝内压力基本不变;当k为1.2时,水力裂缝转向水平节理扩展,最大宽度下降,缝内压力突降,随后才逐步稳定。水力压裂过程中水力裂缝穿层与否会影响压裂效果,因此可以选择合适的应力比值,实现对水力裂缝扩展方向的控制,从而对页岩水力裂缝扩展形态判定和压裂方案制定进行很好的指导。

本文引用格式

张伯虎 , 周昌满 , 郑永香 , 刘建军 . 正交节理与应力比值系数对水力裂缝扩展影响规律研究[J]. 油气藏评价与开发, 2020 , 10(5) : 55 -62 . DOI: 10.13809/j.cnki.cn32-1825/te.2020.05.008

Abstract

The joints in the stratum have a greater impact on the formation of complex fracture networks with hydraulic fractures. In order to study the propagation behavior of hydraulic fractures when they encounter orthogonal joints, the hydraulic fracturing of 3D orthogonal fractures is simulated based on the discrete element method, and the influence of the stress ratio coefficient k on the pressure and width of fractures is analyzed. The research results show that when the hydraulic fracture expands to the intersection of orthogonal joints, it will be hindered, so that the intersecting joint plane will slip and the fracture tip will be passivated, which will hinder the fracture expansion. Shear stress is the main factor that causes the obstruction. When the hydraulic fracture extends along the width direction, the shear stress changes and the hindrance decreases, so the crack can break through the hindrance and continues to extend. The extension direction is greatly affected by the value of k. When k is 0.8 and 1.0, vertical cracks extend through the horizontal joints and expand in the original direction. When k is 1.2, the vertical cracks will turn and expand along the horizontal joints. The maximum width of the hydraulic fracture and the pressure in the fracture are also greatly affected by the value of k. When k is 1.0, the maximum width of the fracture is stable, and the pressure in the fracture is unchanged. When k is 1.2, the hydraulic fracture expands along the horizontal joint after turning, the maximum width decreases, and the pressure in the fracture drops suddenly, and then gradually stabilizes. Whether the hydraulic fracture penetrates will affect the fracturing effect, a suitable stress ratio to control the direction of hydraulic fracture propagation can be chosen. Therefore, it can be a good guide for the determination of the shale hydraulic fracture propagation form and the formulation of the construction plan.

参考文献

[1] 湛小红. 涪陵页岩气田合理配产方法对比优选研究[J]. 石油地质与工程, 2019,33(1):67-71.
[1] ZHAN X H. Comparative optimization of reasonable production allocation methods in Fuling shale gas field[J]. Petroleum Geology and Engineering, 2019,33(1):67-71.
[2] 梅丹, 胡勇, 王倩. 裂缝对气藏储层渗透率及气井产能的贡献[J]. 石油实验地质, 2019,41(5):769-772.
[2] MEI D, HU Y, WANG Q. Experimental study on fracture contribution to gas reservoir permeability and well capacity[J]. Petroleum Geology & Experiment, 2019,41(5):769-772.
[3] 黄晓凯. 复杂构造页岩气井压裂影响因素及工艺优化研究[J]. 海洋石油, 2019,39(2):40-45.
[3] HUANG X K. Study on fracturing influencing factors and technological optimization of shale gas wells with complex structures[J]. Offshore Oil, 2019,39(2):40-45.
[4] 刘炜. 涪陵页岩气水平井高效压裂技术及应用[J]. 海洋石油, 2019,39(1):28-34.
[4] LIU W. Efficient fracturing technology and application forhorizontal well of shale gas in Fuling[J]. Offshore Oil, 2019,39(1):28-34.
[5] 金衍, 程万, 陈勉. 页岩气储层压裂数值模拟技术研究进展[J]. 力学与实践, 2016,38(1):1-9.
[5] JIN Y, CHENG W, CHEN M. A review of numerical simulations of hydro-fracking in shale gas reservoir[J]. Mechanics in Engineering, 2016,38(1):1-9.
[6] 付盼, 田中兰, 李军, 等. 页岩气水平井压裂地层滑移致套损模拟试验研究[J]. 石油机械, 2019,47(3):61-67.
[6] FU P, TIAN Z L, LI J, et al. Physical simulation experiment on casing damage caused by stratigraphic slip in shale gas horizontal well fracturing[J]. China Petroleum Machinery, 2019,47(3):61-67.
[7] 杨文波, 常云超, 邱小庆. 东胜气田致密气藏混合水体积压裂技术研究与应用[J]. 石油地质与工程, 2018,32(3):101-104.
[7] YANG W B, CHANG Y C, QIU X Q. Research and application of mixed water volume fracturing technology in tight gas reservoir in Dongsheng gas field[J]. Petroleum Geology and Engineering, 2018,32(3):101-104.
[8] 郑永香, 刘建军. 注水条件下近裂缝带的地应力演化规律[J]. 大庆石油地质与开发, 2020,39(1):62-73.
[8] ZHENG Y X, LIU J J. Analysis of the earth-stress evolution law near the fracture belt under the condition of water injection[J]. Petroleum Geology & Oilfield Development in Daqing, 2020,39(1):62-73.
[9] GUO T K, ZHANG S C, QU Z Q , et al. Experimental study of hydraulic fracturing for shale by stimulated reservoir volume[J]. Fuel, 2014,128:373-380.
[10] TAN P, JIN Y, HAN K , et al. Analysis of hydraulic fracture initiation and vertical propagation behavior in laminated shale formation[J]. Fuel, 2017,206:482-493.
[11] 刘海龙, 张磊, 谢涛, 等. 定向射孔水力压裂起裂压力研究[J]. 石油机械, 2018,46(9):63-68.
[11] LIU H L, ZHANG L, XIE T, et al. Study on hydraulic fracturing initiation pressure of oriented perforating[J]. China Petroleum Machinery, 2018,46(9):63-68.
[12] XU D, HU R L, GAO W , et al. Effects of laminated structure on hydraulic fracture propagation in shale[J]. Petroleum Exploration and Development, 2015,42(4):573-579.
[13] SUN K M, ZHANG S C, XIN L W . Impacts of bedding directions of shale gas reservoirs on hydraulically induced crack propagation[J]. Natural Gas Industry B, 2016,3(2):139-145.
[14] WANG X L, SHI F, LIU H , et al. Numerical simulation of hydraulic fracturing in orthotropic formation based on the extended finite element method[J]. Journal of Natural Gas Science & Engineering, 2016,33:56-69.
[15] 侯冰, 陈勉, 张保卫, 等. 裂缝性页岩储层多级水力裂缝扩展规律研究[J]. 岩土工程学报, 2015,36(11):2149-2152.
[15] HOU B, CHEN M, ZHANG B W, et al. Propagation of multiple hydraulic fractures in fractured shale reservoir[J]. Chinese Journal of Geotechnical Engineering, 2015,36(11):2149-2152.
[16] ZHANG X, JEFFREY R G, THIERCELIN M . Deflection and propagation of fluid-driven fractures at frictional bedding interfaces: A numerical investigation[J]. Journal of Structural Geology, 2007,29(3):396-410.
[17] CUNDALL P A . Formulation of a three-dimensional distinct element model-Part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics, 1988,25(3):107-116.
[18] HART R, CUNDALL P A, LEMOS J . Formulation of a three-dimensional distinct element model-Part II. Mechanical calculations for motion and interaction of a system composed of many polyhedral blocks[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics, 1988,25(3):117-125.
[19] MCLENNAN J D, TRAN D T, ZHAO N, et al. Modeling of fluid invasion and hydraulic fracture propagation in naturally fractured rock: A three-dimensional approach[C]// paper SPE-127888-MS presented at the SPE International Symposium and Exhibition on Formation Damage Control, 10-12 February 2010, Lafayette, Louisiana, USA.
[20] HAMIDI F, MORTAZAVI A. Three dimensional modeling of hydraulic fracturing process in oil reservoirs[C]// paper ARMA-2012-283 presented at the 46th U.S. Rock Mechanics/Geomechanics Symposium, 24-27 June 2012, Chicago, Illinois, USA.
[21] NAGEL N B, GIL I, SANCHEZ-NAGEL M, et al. Simulating hydraulic fracturing in real fractured rocks-overcoming the limits of pseudo 3D models[C]// paper SPE-140480-MS presented at the SPE Hydraulic Fracturing Conference and Exhibition, 24-26 January 2011, Woodlands, Texas, USA.
[22] ZHENG Y X, LIU J J, LEI Y , et al. The propagation behavior of hydraulic fracture in rock mass with cemented joints[J]. Geofluids, 2019,2019:1-15.
[23] ZHANG F, NAGEL N, LEE B, et al. Fracture network connectivity-a key to hydraulic fracturing effectiveness and microseismicity generation[C]// paper ISRM-ICHF-2013-053 presented at the ISRM International Conference for Effective and Sustainable Hydraulic Fracturing, 20-22 May 2013, Brisbane, Australia.
[24] 杨建, 刘露, 卜淘. 川西低渗致密气藏水平井开发动态差异性分析[J]. 石油地质与工程, 2018,32(5):79-81.
[24] YANG J, LIU L, BU T. Dynamic difference analysis of horizontal well development in low permeability and tight gas reservoirs in western Sichuan[J]. Petroleum Geology and Engineering, 2018,32(5):79-81.
[25] 程超, 林海宇, 蒋裕强, 等. 川南龙马溪组含气页岩热导率实验研究[J]. 石油实验地质, 2019,41(2):289-294.
[25] CHENG C, LIN H Y, JIANG Y Q, et.al. Thermal conductivity of gas-bearing shale of the Longmaxi Formation in the southern Sichuan[J]. Petroleum Geology & Experiment, 2019,41(2):289-294.
[26] 朱志芳. 川东南地区页岩气常压储层措施工艺技术探讨[J]. 海洋石油, 2019,39(1):45-48.
[26] ZHU Z F. Discussion on process technology of shale gas normal pressure reservoir measures in Southeast Sichuan[J]. Offshore Oil, 2019,39(1):45-48.
[27] 张然, 李根生, 赵志红, 等. 压裂中水力裂缝穿过天然裂缝判断准则[J]. 岩土工程学报, 2014,36(3):585-588.
[27] ZHANG R, LI G S, ZHAO Z H, et al. New criteria for hydraulic fracture crossing natural fractures[J]. Chinese Journal of Geotechnical Engineering, 2014,36(3):585-588.
[28] 刘向君, 丁乙, 罗平亚, 等. 天然裂缝对水力裂缝延伸的影响研究[J]. 特种油气藏, 2018,25(2):148.
[28] LIU X J, DING Y, LUO P Y, et al. Influence of natural fracture on hydraulic fracture propagation[J]. Special Oil & Gas Reservoirs, 2018,25(2):148.
[29] 孙博, 薛世峰, 周博. 水力裂缝与天然裂缝相互作用与影响[J]. 科学技术与工程, 2016,16(36):13-19.
[29] SUN B, XUE S F, ZHOU B. The interaction between hydraulic fracture and natural fracture and influencing factors[J]. Science Technology and Engineering, 2016,16(36):13-19.
[30] 刘顺, 何衡, 赵倩云, 等. 水力裂缝与天然裂缝交错延伸规律[J]. 石油学报, 2018,39(3):320-334.
[30] LIU S, HE H, ZHAO Q Y, et al. Staggered extension of hydraulic fractures and natural fractures[J]. Acta Petrolei Sinica, 2018,39(3):320-334.
[31] GUO J C, LUO B, LU C , et al. Numerical investigation of hydraulic fracture propagation in a layered reservoir using the cohesive zone method[J]. Engineering Fracture Mechanics, 2017,186:195-207.
[32] XING P, BUNGER A, YOSHIOKA K, et al. Experimental study of hydraulic fracture containment in layered reservoirs[C]// paper ARMA-2016-049 presented at the 50th U.S. Rock Mechanics/Geomechanics Symposium, 26-29 June 2016, Houston, Texas, USA. USA.
[33] WENG X W, CHUPRAKOV D, KRESSE O , et al. Hydraulic fracture-height containment by permeable weak bedding interfaces[J]. Geophysics, 2018,83(3):137-152.
文章导航

/