油气藏评价与开发 >
2020 , Vol. 10 >Issue 5: 91 - 97
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2020.05.013
页岩气井泡沫排水采气技术应用研究——以平桥南区为例
收稿日期: 2020-03-20
网络出版日期: 2020-09-24
基金资助
国家科技重大专项“彭水地区常压页岩气勘探开发示范工程”(2016ZX05061)
Application of foam drainage-gas recovery technology in shale gas wells: A case study of southern Pingqiao
Received date: 2020-03-20
Online published: 2020-09-24
泡沫排水采气技术是目前较为常见,也是最为有效的一种被各大气田广泛采用的排水采气技术;但因为各气田的生产情况存在一定的差异,起泡剂的使用方式、型号、泡排制度等都不尽相同。目前平桥南区通过借鉴其他气田通常采用的24 h连续加注的方法,部分井在泡沫排水的应用上产生了一定的效果,但另外一部分井与现有泡排制度仍存在一定的不适应性。为了形成一套适合平桥南区页岩气井的泡排模式,结合实验室评价、现场试验及经济性评价,证明泡排工艺能够有效地携出井底积液,实现一定程度上的增产,但后期更侧重于降低页岩气井的产量递减,保证气井的稳产。优选出XHY-4M型液体起泡剂,在起泡剂浓度0.3 %,消泡剂浓度5 %~20 %,消泡剂与起泡剂量比为1.2∶1,泡排井水气比大于0.5时,整体泡排效果较好。同时不断对泡排制度进行调整优化,采用“少注多次”的间歇泡排制度,更加适用且经济评价效果最优。此研究结果对同类页岩气井的稳产具有一定的借鉴价值。
李佳欣 , 张宁波 , 周成香 . 页岩气井泡沫排水采气技术应用研究——以平桥南区为例[J]. 油气藏评价与开发, 2020 , 10(5) : 91 -97 . DOI: 10.13809/j.cnki.cn32-1825/te.2020.05.013
Foam drainage-gas recovery technology is the most common nowadays and is the most effective application technique. However, due to the certain difference in production conditions of different gas fields, the mode, type, and foam drainage system of foaming agents are different. At present, southern Pingqiao adopts the method of 24 h continuous injection which is commonly used in other gas fields. It works in some wells, but for other wells, this technology dose not works well. In order to form a set of foam drainage model suitable for shale gas wells in southern Pingqiao, combined with laboratory evaluation, field test and economic evaluation, it is proved that the foam drainage process can effectively carry out the bottom hole liquid accumulation and achieve a certain degree of production increase. But in the later stage, it is more focused on reducing the production decline of shale gas wells and ensuring the stable production of gas wells. The XHY-4M type liquid foaming agent is optimized for foaming. When the concentration of defoamer is 0.3 %, the concentration of defoamer is 5 % ~ 20 %, the ratio of defoamer and foaming dose is 1.2∶1, the ratio of water to gas in the well is greater than 0.5, and the overall foam drainage effect is better. Meanwhile, the foam drainage system is constantly adjusted and optimized, and the intermittent foam drainage system of “less injection and multiple times” is adopted, which is more applicable and the effect of economic evaluation is optimal. The results of this study have certain reference for the stable production of similar shale gas wells.
[1] | 于相东, 陈天应, 张克杨, 等. 苏里格气田泡沫排水采气技术工艺应用效果分析[J]. 油气井测试, 2017,26(3):56-57. |
[1] | YU X D, CHEN T Y, ZHANG K Y, et al. Application of foam draining and extraction technology of sulige gas field and its effect analysis[J]. Well Testing, 2017,26(3):56-57. |
[2] | 张文红, 王京舰, 李建奇. 泡沫排水采气工艺技术在苏里格气田的应用[J]. 油气井测试, 2005,14(4):42-44. |
[2] | ZHANG W H, WANG J J, LI J Q. Application of foam draining and extraction technology of sulige gas field[J]. Well Testing, 2005,14(4):42-44. |
[3] | 赵晓东. 泡沫稳定性综述[J]. 钻井液与完井液, 1992,9(1):7-14. |
[3] | ZHAO X D. Review of foam stability[J]. Drilling Fluid & Completion Fluid, 1992,9(1):7-14. |
[4] | 詹姆斯·利, 亨利·尼肯斯, 迈克尔·韦尔斯. 气井排水采气[M]. 北京: 石油工业出版社, 2001. |
[4] | LEE J, NICKINS H, WELLS M. Gas well deliquification[M]. Beijing: Petroleum Industry Press, 2001. |
[5] | 杨公田, 邹一峰, 周兴付, 等. 斜井携液临界流量模型研究[J]. 油气藏评价与开发, 2012,2(1):33-36. |
[5] | YANG G T, ZOU Y F, ZHOU X F, et al. Research on the model of liquid-carrying critical flow rate of inclined well[J]. Research Evaluation and Development, 2012,2(1):33-36. |
[6] | 夏斌. 定向气井泡沫排水技术研究[J]. 钻采工艺, 2007,30(5):149-150. |
[6] | XIA B. Research on foam drainage technology in directional gas wells[J]. Drilling & Production Technology, 2007,30(5):149-150. |
[7] | 许园, 蒋泽银, 李伟, 等. 水平井对泡排携液效果的影响[J]. 石油与天然气化工, 2018,47(1):65-68. |
[7] | XU Y, JIANG Z Y, LI W, et al. Influence research of horizontal well on foam-dewatering effect[J]. Chemical Engineering of Oil & Gas, 2018,47(1):65-68. |
[8] | 刘竞, 徐海棠, 余果, 等. 四川盆地页岩气开发指标与开发潜力分析[J]. 天然气勘探与开发, 2014,37(2):45-47. |
[8] | LIU J, XU H T, YU G, et al. Development indices and potential of shale gas, Sichuan Basin[J]. Natural Gas Exploration & Development, 2014,37(2):45-47. |
[9] | 蒋泽银, 李伟, 罗鑫, 等. 长宁页岩气井泡沫排水起泡剂优选及现场应用[J]. 石油与天然气化工, 2018,47(4):73-76. |
[9] | JIANG Z Y, LI W, LUO X, et al. Optimization and application of foam-dewatering agents in Changning shale gas wells[J]. Chemical Engineering of Oil & Gas, 2018,47(4):73-76. |
[10] | 游利军, 谢本彬, 杨建, 等. 页岩气井压裂返排液对储层裂缝的损害机理[J]. 天然气工业, 2018,38(12):61-69. |
[10] | YOU L J, XIE B B, YANG J, et al. Mechanism of fracture damage induced by fracturing fluid flowback in shale gas reservoirs[J]. Natural Gas Industry, 2018,38(12):61-69. |
[11] | 肖高棉, 李颖川, 喻欣. 气藏水平井连续携液理论与实践[J]. 西南石油大学学报(自然科学版), 2010,32(3):122-126. |
[11] | XIAO G M, LI Y C, YU X. Theory and experiment research on the liquid continuous removal of horizontal gas well[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2010,32(3):122-126. |
[12] | 薛方刚, 薛刚计. 天然气井排水采气技术研究与应用[J]. 天然气勘探与开发, 2014,37(3):49-51. |
[12] | XUE F G, XUE G J. Drainage gas recovery technology[J]. Natural Gas Exploration & Development, 2014,37(3):49-51. |
[13] | 熊颖, 贾静, 刘爽, 等. 抗高温泡沫排水用起泡剂的研究与性能评价[J]. 石油与天然气化工, 2012,41(3):308-310. |
[13] | XIONG Y, JIA J, LIU S, et al. Research and performance evaluation of a high temperature resistant foaming agent for drainage[J]. Chemical Engineering of Oil & Gas, 2012,41(3):308-310. |
[14] | 何云, 杨益荣, 刘争芬. 大牛地气田水平井携液规律及排液对策研究[J]. 天然气勘探与开发, 2013,36(3):38-41. |
[14] | HE Y, YANG Y R, LIU Z F. Study on the law of fluid carrying and drainage Countermeasures of horizontal well in Daniudi gas field[J]. Natural Gas Exploration & Development, 2013,36(3):38-41. |
[15] | 梁全权, 邹啁, 王维娜, 等. 产水凝析气井积液诊断研究[J]. 天然气勘探与开发, 2015,38(1):57-59. |
[15] | LIANG Q Q, ZOU Z, WANG W N, et al. Liquid-loading diagnosis of water-producing condensate gas well[J]. Natural Gas Exploration & Development, 2015,38(1):57-59. |
[16] | 田发国, 冯朋鑫, 徐文龙, 等. 泡沫排水采气工艺在苏里格气田的应用[J]. 天然气勘探与开发, 2014,37(3):57-60. |
[16] | TIAN F G, FENG P X, XU W L, et al. Application of foam drainage gas recovery to Sulige gasfield[J]. Natural Gas Exploration & Development, 2014,37(3):57-60. |
[17] | 王川杰, 袁续组, 高威, 等. 威远气田页岩气井产量递减分析方法研究[J]. 天然气勘探与开发, 2014,37(1):56-59. |
[17] | WANG C J, YUAN X Z, GAO W, et al. Methods to analyze production decline of shale-Gas wells in Weiyuan gasfield[J]. Natural Gas Exploration & Development, 2014,37(1):56-59. |
[18] | 高德利, 刘奎. 页岩气井井筒完整性若干研究进展[J]. 石油与天然气地质, 2019,40(3):602-615. |
[18] | GAO D L, LIU K. Progresses in shale gas well integrity research[J]. Oil & Gas Geology, 2019,40(3):602-615. |
[19] | 李勇明, 陈希, 江有适, 等. 页岩储层压裂水平井气—水两相产能分析[J]. 油气地质与采收率, 2019,26(3):117-122. |
[19] | LI Y M, CHEN X, JIANG Y S, et al. Gas-water two-phase productivity analysis for the fractured horizontal well in shale reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2019,26(3):117-122. |
[20] | 端祥刚, 胡志明, 常进, 等. 页岩储层气体流动能力实验研究[J]. 特种油气藏, 2019,26(3):143-147. |
[20] | DUAN X G, HU Z M, CHANG J, et al. Gas flow capacity experiment in shale reservoir[J]. Special Oil & Gas Reservoirs, 2019,26(3):143-147. |
[21] | 王飞, 边会媛, 张永浩, 等. 不同温压下页岩动态与静态弹性模量转换研究[J]. 石油与天然气地质, 2018,39(5):1048-1055. |
[21] | WANG F, BIAN H Y, ZHANG Y H, et al. Experimental study on dynamic and static elastic modulus conversion for shale under different temperatures and pressures[J]. Oil & Gas Geology, 2018,39(5):1048-1055. |
/
〈 | 〉 |