综合研究

煤层气松耦合自动化排采控制技术研究

  • 葛静涛 ,
  • 叶新民 ,
  • 陶文雯 ,
  • 宋关伟
展开
  • 中国石化华东油气分公司,江苏 南京 210000
葛静涛(1980 —),男,硕士,工程师,从事煤层气开发研究。地址:江苏省南京市建邺区江东中路315号,邮政编码:210000。E-mail: gejt@163.com

收稿日期: 2019-12-31

  网络出版日期: 2021-01-07

基金资助

中国石化科技部项目“延川南深层煤层气稳产技术研究”(P19019-4)

Loosely coupled automatic drainage and production control technology of CBM

  • Jingtao GE ,
  • Xinmin YE ,
  • Wenwen TAO ,
  • Guanwei SONG
Expand
  • Sinopec East China Oil and Gas Company, Nanjing, Jiangsu 210000, China

Received date: 2019-12-31

  Online published: 2021-01-07

摘要

传统的煤层气自动化控制容易出现超调和滞后的现象,使煤层气开采自动化控制技术停留在数据采集和简单远程控制。讨论传统PID控制算法在煤层气自动化排采控制中存在的问题,分析产生超调和滞后现象的原因,提出了煤层气井筒流动规律模型与PID控制算法相结合的松耦合自动化排采控制技术,在上位机采用数字模拟多参数耦合降低自动化控制难度,初始化用户指令,在松耦合算法中引用数字模拟的参数作为误差范围值,提高PID控制效率有效地弥补了传统PID控制算法的不足之处。松耦合自动化控制避免单参数控制破坏性开发,适用于煤层气的定套压缓慢降流压、定产量缓慢降流压、稳流压缓慢降套压等多种煤层气独特生产方式。在煤层气自动化排采中有较高的推广价值。

本文引用格式

葛静涛 , 叶新民 , 陶文雯 , 宋关伟 . 煤层气松耦合自动化排采控制技术研究[J]. 油气藏评价与开发, 2020 , 10(6) : 126 -130 . DOI: 10.13809/j.cnki.cn32-1825/te.2020.06.020

Abstract

The traditional automatic control of CBM is easy to overshoot and lag, making the automatic control technology of CBM recovery just stay in the level of data acquisition and simple remote control. Therefore, the problems existing in the traditional PID control algorithm in the automatic control of CBM drainage is discussed, and the causes of over harmonic and lagging phenomenon are analyzed, so as to put forward the loose coupled automatic control technology of CBM wellbore flow rule model combined with PID control algorithm. The upper computer adopts digital analog multi parameters coupling to reduce the difficulty of automatic control, after that, initializes user instructions. In the loosens coupling algorithm, the digital analog parameters are used as the error range value to improve the efficiency of PID control and effectively make up for the shortcomings of traditional one. Loose coupling automatic control can also avoid the destructive development of single parameter control, which is suitable for many unique production modes of CBM, such as slow flow pressure reduction by constant casing pressure and constant production, and slow casing pressure reduction by steady flow pressure. It has a high popularization value in the automatic drainage of CBM.

参考文献

[1] 罗腾文, 屈红军. 胡家河井田煤层气赋存规律研究[J]. 非常规油气, 2017,4(3):36-43.
[1] LUO T W, QU H J. Study on occurrence regularity of coalbed methane in Hujiahe coal field[J]. Unconventional Oil & Gas, 2017,4(3):36-43.
[2] 尹锦涛, 孙建博, 刘刚, 等. 煤层气储层渗透率动态变化规律研究综述[J]. 非常规油气, 2017,4(2):114-118.
[2] YIN J T, SUN J B, LIU G, et al. Literature review of permeability dynamic change law in CBM reservoir[J]. Unconventional Oil & Gas, 2017,4(2):114-118.
[3] 穆福元, 王红岩, 吴京桐, 等. 中国煤层气开发实践与建议[J]. 天然气工业, 2018,38(9):55-60.
[3] MU F Y, WANG H Y, WU J T, et al. Practice of and suggestions on CBM development in China[J]. Natural Gas Industry, 2018,38(9):55-60.
[4] 张建车, 苗耀, 李梦溪. 沁水盆地煤层气水平井产能因素分析[J]. 中国石油勘探, 2010,15(2):49-54.
[4] ZHANG J C, MIAO Y, LI M X. Influential factors of CBM horizontal well productivity in Qinshui Basin[J]. China Petroleum Exploration, 2010,15(2):49-54.
[5] 秦义, 李仰民, 白建梅, 等. 泌水盆地南部高煤阶煤层气井排采工艺研究与实践[J]. 天然气工业, 2011,31(11):22-25.
[5] QIN Y, LI Y M, BAI J M, et al. Research and practice of high rank coalbed methane well drainage and production technology in southern Qinshui basin[J]. Natural Gas Industry, 2011,31(11):22-25.
[6] 冯立杰, 贾依帛, 岳俊举, 等. 煤层气开采关键地质影响因素[J]. 石油与天然气地质, 2017,38(6):1105-1112.
[6] FENG L J, JIA Y B, YUE J J, et al. Key geological factors influencing coal bed methane exploitation[J]. Oil & Gas Geology, 2017,38(6):1105-1112.
[7] 邹宇清, 赵凤坤, 黄勇, 等. 煤层气排采远程自动控制平台的建立与应用[J]. 天然气工业, 2015,35(12):42-47.
[7] ZOU Y Q, ZHAO F K, HUANG Y, et al. Establishment and application of a remote automatic control platform for CBM production[J]. Natural Gas Industry, 2015,35(12):42-47.
[8] SEALE S R, COUSINS B, HANNA R. Enterprise SCADA case study: pipeline, plants, production[C]// paper SPE-167847-MS presented at the SPE Intelligent Energy Conference & Exhibition, 1-3 April, 2014, Utrecht, The Netherlands.
[9] 史艳霞. 油气生产物联网SCADA系统安全风险评估及防御框架研究[D]. 兰州:兰州理工大学, 2019.
[9] SHI Y X. Research on security risk assessment and defense framework of SCADA of oil and gas production internet of things[D]. Lanzhou: Lanzhou University of Technology, 2019.
[10] 钱灯云. 基于遗传算法的高压最小流量阀PID自适应控制研究[D]. 上海:上海交通大学, 2012.
[10] QIAN D Y. Study of PID adaptive control based on genetic algorithm for high pressure min flow value[D]. Shanghai: Shanghai Jiao Tong University, 2012.
[11] 胡秋嘉, 贾慧敏, 祁空军, 等. 高煤阶煤层气井单相流段流压精细控制方法——以沁水盆地樊庄—郑庄区块为例[J]. 天然气工业, 2018,38(9):76-81.
[11] HU Q J, JIA H M, QI K J, et al. A fine control method of flowing pressure in single-phase flow section of high-rank CBM gas development wells: A case study from the Fanzhuang-Zhengzhuang Block in the Qinshui Basin[J]. Natural Gas Industry, 2018,38(9):76-81.
[12] 董银涛. 煤层气直井井筒流动模型研究[D]. 北京:中国石油大学(北京), 2017.
[12] DONG Y T. Study on wellbore flow model of coalbed methane vertical wells[D]. Beijing: China University of Petroleum (Beijing), 2017.
[13] 范伟东, 王翔, 郭继香, 等. 流动型态对气液总压降的影响实验研究[J]. 石油与天然气化工, 2019,48(6):59-64.
[13] FAN W D, WANG X, GUO J X, et al. Experimental study on the effect of flow patterns on gas-liquid total pressure drop[J]. Chemical Engineering of Oil & Gas, 2019,48(6):59-64.
[14] 毛慧, 韩国庆, 吴晓东, 等. 煤层气井气水两相流流动阶段流入动态研究[J]. 断块油气田, 2011,18(4):502-504.
[14] MAO H, HAN G Q, WU X D, et al. Study on inflow performance in gas-water two-phase flow stage of coalbed methane well[J]. Fault-Block Oil & Gas Field, 2011,18(4):502-504.
[15] 叶卫东. 抽油泵气液两相流动机理及防气性能研究[D]. 大庆:东北石油大学, 2018.
[15] YE W D. Research of gas-liquid two-phase flow mechanism and anti-gas performance of sucker pump[D]. Daqing: Northeast Petroleum University, 2018.
[16] 于杰. 工业自动化仪表与自动化的控制技术[J]. 科技资讯, 2013,28(26):88.
[16] YU J. Industrial automation instruments and automation control technology[J]. Science & Technology Information, 2013,28(26):88.
[17] 武昕坤. 基于嵌入式的多组智能化组合电动单轨吊装系统[D]. 成都:西华大学, 2015.
[17] WU X K. System of motor-driven overhead trolleys of multiple intelligent combinations based on embedded system[D]. Chengdu: Xihua University, 2015.
[18] 高肇凌, 郭雪, 张少雷, 等. 基于模糊PID控制的煤层气智能排采系统应用[J]. 石油化工自动化, 2016,52(1):46-49.
[18] GAO Z L, GUO X, ZHANG S L, et al. Application of CBM automatic pumping system based on fuzzy PID control[J]. Petrochemical Automation, 2016,52(1):46-49.
[19] 田金艳. 基于静止无功发生器的抽油机自动补偿节能系统研究[D]. 大庆:东北石油大学, 2016.
[19] TIAN J Y. Study of automatic compensation energy-saving system for pumping unit based on static reactive power generator[D]. Daqing: Northeast Petroleum University, 2016.
[20] 李军峰. 固定翼频率域航空电磁系统测量技术研究[D]. 北京:中国地质大学(北京), 2010.
[20] LI J F. A study on measuring technology of fix-wing frequency domain airborne electromagnetic system[D]. Beijing: China University of Petroleum (Beijing), 2010.
[21] 何超. 流速仪检定伺服控制系统开发[D]. 乌鲁木齐:新疆大学, 2015.
[21] HE C. Development of current meter verification system based on servo control technology[D]. Urumqi: Xinjiang University, 2015.
文章导航

/