方法理论

基于微观渗流特征的水驱后残余油动用机理研究

  • 杨庭宝 ,
  • 钟会影 ,
  • 夏惠芬 ,
  • 赵欣
展开
  • 1.东北石油大学提高油气采收率教育部重点实验室,黑龙江 大庆 163318
    2.中国石油大庆油田有限责任公司勘探开发研究院,黑龙江 大庆 163712
杨庭宝(1996 —),男,在读硕士研究生,主要从事油气渗流理论与应用及提高采收率原理方面的研究。地址:黑龙江省大庆市高新技术产业开发区学府街99号,邮政编码:163318。E-mail: sxdtytb@163.com

收稿日期: 2020-06-05

  网络出版日期: 2021-01-07

基金资助

中国博士后科学基金“考虑诱导裂缝闭合的黏弹性聚合物驱压力降落特征研究”(2019M661250)

Mechanism of residual oil mobilization after water flooding based on microscopic flow characteristics

  • Tingbao YANG ,
  • Huiying ZHONG ,
  • Huifen XIA ,
  • Xin ZHAO
Expand
  • 1.Key Laboratory for Enhanced Oil & Gas Recovery of the Ministry of Education, Northeast Petroleum University, Daqing, Heilongjiang 163318, China
    2.Research Institute of Exploration and Development, Daqing Oilfield of CNPC, Daqing, Heilongjiang 163712, China

Received date: 2020-06-05

  Online published: 2021-01-07

摘要

为摸清水驱后残余油的形成机理及分布情况并挖掘残余油潜力,基于N-S方程建立了并联孔隙微观模型,运用相场法追踪驱替过程中的相界面,研究不同壁面润湿条件下的水驱后残余油分布特征,并通过聚合物驱改善流度比、表面活性剂改变界面张力或发生润湿反转等方法挖潜水驱后残余油,研究流度比及界面张力等参数对水驱后并联孔隙内残余油微观流动规律的影响。结果表明,当岩石表面表现为亲水时,水驱后残余油主要滞留在并联孔隙的大孔道内,通过聚合物驱改善流度比可以将孔道内的残余油有效动用,表现为残余油被整体驱动。当岩石壁面为亲油时,水驱后残余油主要滞留在并联孔隙的壁面以及小孔道内,改善流度比对小孔道内形成的残余油很难达到动用的目的,但通过表活剂改变润湿性后,残余油被拉伸成油滴并聚并,最终降低残余油饱和度;流度比或界面张力越小,驱油效率越高。该研究揭示了并联孔隙内水驱后残余油分布及动用机理,为水驱油藏有效开发提供了重要的理论依据。

本文引用格式

杨庭宝 , 钟会影 , 夏惠芬 , 赵欣 . 基于微观渗流特征的水驱后残余油动用机理研究[J]. 油气藏评价与开发, 2020 , 10(6) : 46 -52 . DOI: 10.13809/j.cnki.cn32-1825/te.2020.06.007

Abstract

In order to find out the formation mechanism and distribution of residual oil after water flooding and tap the potential of residual oil, a parallel pore micro model has been established based on N-S equation. Phase field method has been used to track the phase interface in the process of water flooding. The distribution characteristics of residual oil after water flooding under different wall wetting conditions have been studied. The residual oil after water flooding has been exploited by mobility ratio improved by polymer flooding, interfacial tension changed by surfactant or wettability inversion occurred. And the effects of different mobility ratio and interfacial tension on the micro flow of residual oil in parallel pores after water flooding have been studied. The results show that when the rock surface is water-wet, the residual oil mainly stays in the large pore channels in parallel pores after water flooding. The polymer flooding improving the mobility ratio can effectively displace the residual oil in the pore channels, entirely. When the rock surface is oil-wet, the residual oil after water flooding mainly stays in the wall of parallel pores and small channels. It is difficult to displace the residual oil in the small pore by improving the mobility ratio. However, after changing wettability by surfactant, the residual oil is stretched into oil droplets and congregated, and finally the residual oil saturation is reduced. The lower the mobility ratio or interfacial tension, the higher the oil displacement efficiency. This study reveals the distribution and displacement mechanism of residual oil in parallel pores after water flooding, and provides an important theoretical basis for the effective exploitation of reservoirs by water flooding.

参考文献

[1] 邴绍献. 基于特高含水期油水两相渗流的水驱开发特征研究[D]. 成都:西南石油大学, 2013.
[1] BING S X. Study on water drive development characteristics based on the oil-water two phase flow of ultra-high water cut stage[D]. Chengdu: Southwest Petroleum University, 2013.
[2] 朱丽红, 杜庆龙, 姜雪岩, 等. 陆相多层砂岩油藏特高含水期三大矛盾特征及对策[J]. 石油学报, 2015,36(2):210-216.
[2] ZHU L H, DU Q L, JIANG X Y, et al. Characteristics and strategies of three major contradictions for continental facies multi-layered sandstone reservoir at ultra-high water cut stage[J]. Acta Petrolei Sinica, 2015,36(2):210-216.
[3] 雷群, 翁定为, 罗健辉, 等. 中国石油油气开采工程技术进展与发展方向[J]. 石油勘探与开发, 2019,46(1):139-145.
[3] LEI Q, WENG D W, LUO J H, et al. Achievements and future work of oil and gas production engineering of CNPC[J]. Petroleum Exploration and Development, 2019,46(1):139-145.
[4] 李爱华, 龙文达. 港中油田南一断块高含水后期提高开发效果研究[J]. 石油地质与工程, 2019,33(4):58-60.
[4] LI A H, LONG W D. Improving development effect of high water cut in late development stage of Nanyi fault block of Gangzhong oilfield[J]. Petroleum Geology and Engineering, 2019,33(4):58-60.
[5] 朱光普, 姚军, 张磊, 等. 特高含水期剩余油分布及形成机理[J]. 科学通报, 2017,62(22):2553-2563.
[5] ZHU G P, YAO J, ZHANG L, et al. Pore-scale investigation of residual oil distributions and formation mechanisms at the extra-high water-cut stage[J]. Chinese Science Bulletin, 2017,62(22):2553-2563.
[6] 李金宜, 马奎前, 朱文森, 等. 早期注聚油藏残余油类型及影响因素实验[J]. 石油钻采工艺, 2018,40(4):515-521.
[6] LI J Y, MA K Q, ZHU W S, et al. Experimental study on the types and influential factors of residual oil in oil reservoirs after early polymer flooding[J]. Oil Drilling & Production Technology, 2018,40(4):515-521.
[7] 胡伟, 吕成远, 王锐, 等. 水驱油藏注CO2非混相驱油机理及剩余油分布特征[J]. 油气地质与采收率, 2017,24(5):99-105.
[7] HU W, LYU C Y, WANG R, et al. Mechanism of CO2 immiscible flooding and distribution of remaining oil in water drive oil reservoir[J]. Petroleum Geology and Recovery Efficiency, 2017,24(5):99-105.
[8] 赵柏杨, 夏连晶. 低渗透油藏内烯烃磺酸盐微乳液体系配方优选及性能评价[J]. 油田化学, 2020,37(1):102-108.
[8] ZHAO B Y, XIA L J. Formula optimization and performance evaluation of internal olefin sulfonate microemulsion system used in low permeability reservoir[J]. Oilfield Chemistry, 2020,37(1):102-108.
[9] 曹静静, 杨矞琦. 国内低渗透油藏提高采收率技术现状及展望[J]. 四川化工, 2017,20(6):17-21.
[9] CAO J J, YANG Y Q. The present situation and prospect of enhancing low permeability reservoir recovery technology in China[J]. Sichuan Chemical Industry, 2017,20(6):17-21.
[10] 李剑, 段景杰, 姚振杰, 等. 低渗透油藏水驱后注CO2驱提高采收率影响因素分析[J]. 非常规油气, 2017,4(6):45-52.
[10] LI J, DUAN J J, YAO Z J, et al. Analysis on influence factors of enhanced oil recovery in co2 flooding after water flooding in low permeability reservoir[J]. Unconventional Oil & Gas, 2017,4(6):45-52.
[11] 储政. 黏土稳定剂NH-FB1在低渗透油藏注水井中的应用[J]. 能源化工, 2017,38(4):28-31.
[11] CHU Z. Application of clay stabilizer NH-FB1 in water injection well of low permeability reservoir[J]. Energy Chemical Industry, 2017,38(4):28-31.
[12] 吕腾. 低渗透油藏微乳液驱油提高采收率机理研究[D]. 大庆:东北石油大学, 2017.
[12] LYU T. Study on the mechanism of enhanced oil recovery by microemulsion flooding in Low permeability reservoirs[D]. Daqing: Northeast Petroleum University, 2017.
[13] 刘晨, 王业飞, 于海洋, 等. 低渗透油藏表面活性剂驱油体系的室内研究[J]. 石油与天然气化工, 2011,40(5):486-489.
[13] LIU C, WANG Y F, YU H Y, et al. The laboratory study on surfactant flooding system for low permeable reservoir[J]. Chemical Engineering of Oil & Gas, 2011,40(5):486-489.
[14] 赵光, 戴彩丽, 由庆. 冻胶分散体软体非均相复合驱油体系特征及驱替机理[J]. 石油勘探与开发, 2018,45(3):464-473.
[14] ZHAO G, DAI C L, YOU Q. Characteristics and displacement mechanisms of the dispersed particle gel soft heterogeneous compound flooding system[J]. Petroleum Exploration and Development, 2018,45(3):464-473.
[15] 王彦玲, 王刚霄, 李永飞, 等. 聚合物/表面活性剂复合体系在稠油油藏孔隙中的微观驱油过程[J]. 油田化学, 2018,35(4):686-690.
[15] WANG Y L, WANG G X, LI Y F, et al. Micro-displacement process of surfactant/polymer system in heavy oil reservoir pores[J]. Oilfield Chemistry, 2018,35(4):686-690.
[16] 吴鹏, 宋考平, 张跃, 等. 聚合物驱油体系高效络合剂研究[J]. 特种油气藏, 2020,27(1):114-120.
[16] WU P, SONG K P, ZHANG Y, et al. High-efficiency complexing agent for polymer flooding system[J]. Special Oil & Gas Reservoirs, 2020,27(1):114-120.
[17] 王鑫. 表面活性剂驱油技术提高采收率机理及影响因素分析[J]. 石油化工应用, 2019,38(3):5-8.
[17] WANG X. Improve recovery by surfactant flooding technology and analyze its influencing factors[J]. Petrochemical Industry Application, 2019,38(3):5-8.
[18] AFSHARPOOR A, MA K, DUBOIN A, et al. Micro-scale experiment and CFD modeling of viscoelastic polymer: Trapped oil displacement and deformation at the dead-end[C]// paper SPE-169037-MS presented at SPE Improved Oil Recovery Symposium, 12-16 April, 2014, Tulsa, Oklahoma, USA.
[19] WANG Z H, LIU Y, LE X P, et al. The effects and control of viscosity loss of polymer solution compounded by produced water in oilfield development[J]. International Journal of Oil, Gas and Coal Technology, 2014,7(3):298-307.
[20] 陈才, 卢祥国, 杨玉梅. 复配聚合物驱油效果及影响因素研究[J]. 特种油气藏, 2011,18(5):105-107.
[20] CHEN C, LU X G, YANG Y M. Displacement characteristics and affecting factors of compound polymer flooding[J]. Special Oil & Gas Reservoirs, 2011,18(5):105-107.
[21] 孙羽佳. 三元复合体系对不同润湿性简化孔隙中残余油的作用研究[D]. 大庆:东北石油大学, 2016.
[21] SUN Y J. Research on the influence of ASP solution on the residual oil in simplified core with different wettability[D]. Daqing: Northeast Petroleum University, 2016.
[22] 何更生, 唐海. 油层物理[M]. 北京: 石油工业出版社, 2011: 260.
[22] HE G S, TANG H. Physics of Petroleum Reservoirs[M]. Beijing: Petroleum industry press, 2011: 260.
文章导航

/