油气藏评价与开发 >
2020 , Vol. 10 >Issue 6: 53 - 57
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2020.06.008
温敏型聚合物驱油性能研究
收稿日期: 2020-10-09
网络出版日期: 2021-01-07
基金资助
国家科技重大专项“高温高盐油田化学驱提高采收率技术”(2016ZX05011-003)
Study on oil displacement performance of temperature sensitive polymer
Received date: 2020-10-09
Online published: 2021-01-07
为了改善聚丙烯酰胺在高温高盐油藏条件下溶液的增黏性能,常用的方法是在合成过程中引入缔合类和抗盐类单体,但随着单体合成技术的发展,出现了一些温敏型共聚物,目前对这类聚合物驱油性能的研究较少。为此选择了常规AM-NaAA二元共聚物和AM-NaAA-RTM温敏型三元共聚物,对比了两种聚合物的基本物化性能、增黏性、耐温性和黏弹性,结果表明,引入温敏型单体后,温度低于60 ℃时,AM-NaAA-RTM共聚物黏度随温度的增加仍然降低,但在温度高于60 ℃时,黏度随温度的增加逐渐提高,在85 ℃时,AM-NaAA-RTM共聚物的黏度相对AM-NaAA二元共聚物提高1倍以上,有利于高温油藏扩大波及体积,且AM-NaAA-RTM共聚物黏弹模量高于常规AM-NaAA聚合物,因此,温敏型聚合物驱油效果好于常规AM-NaAA聚合物,有望应用在高温高盐油藏化学驱中。
徐辉 , 祝仰文 , 宋敏 , 庞雪君 , 孙秀芝 . 温敏型聚合物驱油性能研究[J]. 油气藏评价与开发, 2020 , 10(6) : 53 -57 . DOI: 10.13809/j.cnki.cn32-1825/te.2020.06.008
In order to improve the viscosity-increasing performance of polyacrylamide solution in high temperature and high salt reservoir, the common method is to introduce association and salt-resistant monomer in the synthesis process. However, with the development of monomer synthesis technology, some temperature-sensitive copolymers appear. At present, there are few researches on the oil displacement performance of these polymers. For this reason, conventional binary copolymer AM-NaAA and temperature sensitive terpolymer AM-NaAA-RTM have been selected, and the basic physico-chemical properties, viscosity enhancement, temperature resistance and viscoelasticity of the two polymers have been compared. The results show that after the introduction of temperature sensitive monomers, when the temperature is below 60 ℃, with the rise of temperature, the viscosity of AM-NaAA-RTM decreases; but when the temperature is above 60 ℃, its viscosity increases with the rise of temperature; while at 85 ℃, the viscosity of AM-NaAA-RTM is more than double that of AM-NaAA, which is conducive to expanding swept volume of high temperature reservoirs. In addition, the viscoelasticity modulus of AM-NaAA-RTM is higher than that of AM-NaAA. Therefore, the oil flooding effect of temperature-sensitive polymer is better than that of conventional AM-NaAA polymer, which is expected to be applied in chemical flooding of high temperature and high salt reservoirs.
[1] | 张栋, 吴文祥, 任佳潍, 等. Ca2+与Mg2+对聚合物黏度影响及其增黏方法[J]. 大庆石油地质与开发, 2016,35(1):105-108. |
[1] | ZHANG D, WU W X, REN J W, et al. Influences of Ca2+ and Mg2+ on the viscosity of the polymer solution and thickening method[J]. Petroleum Geology & Oilfield Development in Daqing, 2016,35(1):105-108. |
[2] | 徐辉. 超高分子缔合聚合物溶液特性及驱油效果研究[J]. 石油钻探技术, 2015,43(2):78-83. |
[2] | XU H. The solution characteristics and oil displacement efficiency research of ultra-high molecular weight association polymer[J]. Petroleum Drilling Techniques, 2015,43(2):78-83. |
[3] | 曹绪龙, 刘坤, 韩玉贵, 等. 耐温抗盐缔合聚合物的合成及性能评价[J]. 油气地质与采收率, 2014,21(2):10-14. |
[3] | CAO X L, LIU K, HAN Y G, et al. Synjournal and properties of heat-tolerance and salt-resistance hydrophobically associating water-soluble polymer[J]. Petroleum Geology and Recovery Efficiency, 2014,21(2):10-14. |
[4] | 冯玉军, 罗传秋, 罗平亚, 等. 疏水缔合水溶性聚丙烯酰胺的溶液结构的研究[J]. 石油学报(石油加工), 2001,17(6):39-44. |
[4] | FENG Y J, LUO C Q, LUO P Y, et al. Study on characterization of microstructure of hydrophobically associating water-soluble polymer in aqueous media by scanning electron microscopy and environmental scanning electron microscope[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2001,17(6):39-44. |
[5] | 徐辉, 曹绪龙, 石静, 等. 新型物理交联凝胶体系性能特点及调驱能力研究[J]. 石油与天然气化工, 2018,47(1):69-73. |
[5] | XU H, CAO X L, SHI J, et al. Performance characteristic and profile modification research of new type physical cross-link gel system[J]. Chemical Engineering of Oil & Gas, 2018,47(1):69-73. |
[6] | 赵方园, 毛炳权, 伊卓, 等. 丙烯酰胺/2-丙烯酰胺基-2-甲基丙磺酸共聚物合成的逐级放大及其性能的研究[J]. 石油化工, 2013,42(1):34-38. |
[6] | ZHAO F Y, MAO B Q, YI Z, et al. Stepwise scaling up of acrylamide/2-acrylamide-2-methylpropanesulfonic acid copolymer synjournal and its properties[J]. Petrochemical Technology, 2013,42(1):34-38. |
[7] | 崔士红. 具有乙烯基吡咯烷酮结构的水溶性两亲共聚物的合成与性质研究[D]. 济南:山东大学化学与化工学院, 2014. |
[7] | CUI S H. Design, synthesis and phase behavior of semi-rigid water-soluble thermo-responsive polymer[D]. Jinan: Shan Dong University of Chemistry and Chemical engineering institute, 2014. |
[8] | 钟景兴, 陈煜, 谭惠民. AM/NVP二元共聚物的溶液性能[J]. 高分子材料科学与工程, 2005,21(4):220-223. |
[8] | ZHONG J X, CHEN Y, TAN H M. Study on solution properties of AM/NVP copolymer[J]. Polymer Materials Science And Engineering, 2005,21(4):220-223. |
[9] | 谢璐瑶, 程金梁, 冯玉军, 等. 基于聚醚的热增黏接枝聚合物的合成及性能[J]. 高分子材料科学与工程, 2016,32(7):29-34. |
[9] | XIE L Y, CH J L, FENG Y J, et al. Synjournal and properties of thermo-viscosifying polyether-based graft polymers[J]. Polymer Materials Science And Engineering, 2016,32(7):29-34. |
[10] | 马超, 朱倩倩, 潘茗蕾, 等. 温敏型聚合物在稠油污水中的絮凝作用探讨[J]. 工业水处理, 2017,37(5):50-53. |
[10] | MA C, ZHU Q Q, PAN M L, et al. Discussion on flocculation effect of the temperature-sensitive polymer in thick oil wastewater[J]. Industrial Water Treatment, 2017,37(5):50-53. |
[11] | 郭锦棠, 董美美, 于永金, 等. 温敏增稠固井水泥外加剂的合成与性能研究[J]. 天津大学学报(自然科学与工程技术版), 2016,49(6):597-602. |
[11] | GUO J T, DONG M M, YU Y J, et al. Synjournal and Properties of Thermo-thickening Oil Well Cement Additives[J]. Journal of Tianjin University(Science and Technology), 2016,49(6):597-602. |
[12] | 冯玉军, 黄荣华, 张熙. 三次采油用热增粘水溶性聚合物研究进展[J]. 高分子通报, 2013(9):96-106. |
[12] | FENG Y J, HUANG R H, ZHANG X. Thermoviscosifying water-soluble polymers for tertiary oil recovery state of the art[J]. Polymer Bulletin, 2013(9):96-106. |
[13] | 吴文祥, 王德民. 聚合物黏弹性提高驱油效率研究[J]. 中国石油大学学报(自然科学版), 2011,35(5):134-138. |
[13] | WU W X, WANG D M. Research on improving oil displacement efficiency using viscoelastic behavior of polymer[J]. Journal of China University of Petroleum(Edition of Natural Science), 2011,35(5):134-138. |
[14] | 刘洋, 刘春泽. 黏弹性聚合物溶液提高驱油效率机理研究[J]. 中国石油大学学报(自然科学版), 2007,31(2):91-94. |
[14] | LIUI Y, LIU C Z. Mechanism of enhancing oil displacement efficiency by viscoelastic polymer solution[J]. Journal of China University of Petroleum(Edition of Natural Science), 2007,31(2):91-94. |
[15] | 王德民, 程杰成, 杨清彦. 黏弹性聚合物溶液能够提高岩心的微观驱油效率[J]. 石油学报, 2000,21(5):45-51. |
[15] | WANG D M, CHEN J C, YANG Q Y. Viscous-elastic polymer can increase micro-scale displacement efficiency in core[J]. Acta Petrolei Sinica, 2000,21(5):45-51. |
[16] | 夏惠芬, 张九然, 刘松原. 聚丙烯酰胺溶液的黏弹性及影响因素[J]. 大庆石油学院学报, 2011,35(1):37-41. |
[16] | XIA H F, ZHANG J R, LIU S Y. Viscoelasticity and factors of polymer solution[J]. Journal of Northeast Petroleum University, 2011,35(1):37-41. |
[17] | 王德民, 王刚, 吴文祥. 黏弹性驱替液所产生的微观力对驱油效率的影响[J]. 西安石油大学学报(自然科学版), 2008,23(1):43-55. |
[17] | WANG D M, WANG G, WU W X. Influence of the micro-force produced by viscoelastic displacement liquid on displacement efficiency[J]. Journal of Xi’an Shiyou University(Natural Science Edition), 2008,23(1):43-55. |
/
〈 | 〉 |