油气藏评价与开发 >
2020 , Vol. 10 >Issue 6: 96 - 102
DOI: https://doi.org/10.13809/j.cnki.cn32-1825/te.2020.06.015
双河油田高耗水条带影响因素及治理对策可行性研究
收稿日期: 2020-08-26
网络出版日期: 2021-01-07
基金资助
中国石化股份有限公司示范工程“中高渗砂砾岩油藏聚驱后非均相复合驱技术”(P19007-4);中国石化股份有限公司重大专项“聚驱后油藏水驱提高采收率技术”(P16080)
Influencing factors and countermeasures feasibility of high water consumption strip in Shuanghe Oilfield
Received date: 2020-08-26
Online published: 2021-01-07
中国东部油田长期注水开发,油藏高耗水条带发育,导致注水效率降低。为了明确高耗水条带发育的影响因素,以南阳双河北块为研究对象,分别分析了注入速度、渗透率级差、渗透率变异系数、地层系数四个因素对发育高耗水条带的影响,结合正交实验比较四个因素的影响因素相对大小。研究得出渗透率高、注入速度小、渗透率变异系数和渗透率级差高,更容易发育高耗水条带并导致水驱开发效果变差;在地层系数、注入量一定的情况下,渗透率高,更容易发育高耗水条带。通过正交试验,确定了渗透率变异系数对发育高耗水条带的影响最大,渗透率级差以及地层系数的影响次之,注入速度影响最小,为油田后期生产调整提供一定的参考。
刘博 , 张荣达 , 张伊琳 , 卢云霞 , 汪婷 . 双河油田高耗水条带影响因素及治理对策可行性研究[J]. 油气藏评价与开发, 2020 , 10(6) : 96 -102 . DOI: 10.13809/j.cnki.cn32-1825/te.2020.06.015
For the oilfields in east China with long-term water injection development, the water injection efficiency is gradually reduced due to the developed high water consumption strip in reservoir. In order to define the influence factors of development of the high water consumption strip, taking northern Shuanghe block in Nanyang as the research object, the influences of injection rate, permeability ratio, permeability variation coefficient and formation coefficient on the development of high water consumption strip have been analyzed respectively. Combined with orthogonal experiment, the relative influence level of the four factors is compared. The results show that high permeability, low injection rate, high permeability variation coefficient and high permeability ratio are more likely to cause the problems. With a certain formation coefficient and injection amount, high permeability is in major. Through the orthogonal test, the permeability variation coefficient influences most, followed by permeability ratio and formation coefficient, and the injection rate influences least. This study provides some reference for the adjustment in the later stage of oilfield production.
[1] | 李红. 双河油田Eh3Ⅶ下层系提高采收率研究[J]. 石油地质与工程, 2018,32(5):66-69. |
[1] | LI H. The EOR study on Eh3Ⅶ lower series of shuanghe oifield[J]. Petroleum Geology and Engineering, 2018,32(5):66-69. |
[2] | 甘文军. 特低渗小断块油藏流场调整实践与认识—以东北分公司油田为例[J]. 石油地质与工程, 2019,33(6):58-61. |
[2] | GAN W J. Practice and understanding of flow field adjustment in small fault block reservoir with ultra-low permeability——By taking Northeast Oil & Gas Oilfield Company as an example[J]. Petroleum Geology and Engineering, 2019,33(6):58-61. |
[3] | 肖康, 穆龙新, 姜汉桥, 等. 封堵优势通道动用剩余油机制及策略[J]. 石油与天然气地质, 2017,38(6):1180-1186. |
[3] | XIAO K, MU L X, JIANG H Q, et al. Mechanisms of remaining oil production by plugging dominant flowing path and the application and strategies[J]. Oil & Gas Geology, 2017,38(6):1180-1186. |
[4] | KIRKLAND C M, THANE A, HIEBERT R, et al. Addressing wellbore integrity and thief zone permeability using microbially-induced calcium carbonate precipitation(MICP): A field demonstration[J]. Journal of Petroleum Science and Engineering, 2020,190. |
[5] | 张伟, 刘斌, 王欣然, 等. 基于时变理论的优势通道演化规律研究[J]. 新疆石油天然气, 2019,15(4):61-66. |
[5] | ZHANG W, LIU B, WANG X R, et al. Evolution law of dominant channel based on time-variation theory[J]. Xinjiang Petroleum & Natural Gas, 2019,15(4):61-66. |
[6] | HUANG B, XU R, FU C, et al. Thief zone assessment in sandstone reservoirs based on multi-layer weighted principal component analysis[J]. Energies, 2018,11(5). |
[7] | 郭长春. 测井综合指数法识别新井高渗条带[J]. 测井技术, 2014,38(6):755-759. |
[7] | GUO C C. Identification of high-permeability strip in new wells by well logging composite index method[J]. Well logging technology, 2014,38(6):755-759. |
[8] | 佟颖, 贾元元. 基于刻蚀模型的高渗条带控制下剩余油微观赋存特征[J]. 科学技术与工程, 2018,18(28):80-86. |
[8] | TONG Y, JIA Y Y. Microscopic occurrence characteristics of remaining oil under the control of high-permeability Strip based on etching model[J]. Science, Technology and Engineering, 2016,18(28):80-86. |
[9] | WANG G, CAO C, PU X L, et al. Experimental investigation on plugging behavior of granular lost circulation materials in fractured thief zone[J]. Particulate Science and Technology, 2016,34(4). |
[10] | 刘太勋, 李超, 刘畅, 等. 三角洲前缘河口坝复合体剩余油分布物理模拟[J]. 中国石油大学学报(自然科学版), 2018,42(6):1-8. |
[10] | LIU T X, LI C, LIU C, et al. Experimental simulation of remaining oil distribution in combined debouch bar of delta front reservoir[J]. Journal of China University of Petroleum(Edition of Natural Science), 2018,42(6):1-8. |
[11] | 沈黎阳, 毛立华, 王坤, 等. 中渗油藏相控剩余油分布特征研究及应用[J]. 断块油气田, 2017,24(1):31-34. |
[11] | SHEN L Y, MAO L H, WANG K, et al. Distribution of remaining oil controlled by facies in medium permeability reservoir and application[J]. Fault-Block Oil and Gas Field, 2017,24(1):31-34. |
[12] | 王国锋. 低渗透油层低黏度聚驱微观剩余油动用机理[J]. 断块油气田, 2018,25(6):776-780. |
[12] | WANG G F. Microscopic residual oil utilization mechanism of low viscosity polymer flooding in low permeability reservoir[J]. Fault-Block Oil and Gas Field, 2018,25(6):776-780. |
[13] | 郑松青, 杨敏, 康志江, 等. 塔河油田缝洞型碳酸盐岩油藏水驱后剩余油分布主控因素与提高采收率途径[J]. 石油勘探与开发, 2019,46(4):746-754. |
[13] | ZHENG S Q, YANG M, KANG Z J, et al. Controlling factors of remaining oil distribution after water flooding and enhanced oil recovery methods for fracture-cavity carbonate reservoirs in Tahe Oilfield[J]. Petroleum Exploration and Development, 2019,46(4):746-754. |
[14] | 李敏, 张忠民, 张德民, 等. 新民油田高含水期剩余油分布特征及控制因素分析[J]. 科学技术与工程, 2020,20(3):992-1000. |
[14] | LI M, ZHANG Z M, ZHANG D M, et al. Distribution characteristics and control factors of remaining oil during high water cut stage in Xinmin Oilfield[J]. Science Technology and Engineering, 2020,20(3):992-1000. |
[15] | DING S W, JIANG H Q, LIU G W, et al. Determining the levels and parameters of thief zone based on automatic history matching and fuzzy method[J]. Journal of Petroleum Science and Engineering, 2016,138:138-152. |
/
〈 | 〉 |